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Abstract

This document is the Deliverable D2.1 of the Quantum-oriented Update to Browsers and Infrastructures for
the Post-quantum transition (QUBIP) project. The document describes three pilot demonstrators together
with their system requirements and specifications and the overall system architecture. Note that the three
pilots are based on the eight Post-Quantum (PQ) building blocks presented in Deliverable D1.4.



Contents

1 Introduction 10

2 Quantum-secure IoT-based Digital Manufacturing 12
2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Sequence of interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Quantum-secure Internet Browsing 21
3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Client architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Server architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Client–Issuer interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.4 Client–Server interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Quantum-secure Software Network Environments for Telco Operators 33
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Sequence of interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Conclusions 42



List of Figures

1.1 Methodology of the QUBIP project: from building block to system level transition to PQC . . 10

2.1 Architecture of the IoT-based Digital Manufacturing Pilot. . . . . . . . . . . . . . . . . . . . 17
2.2 Sequence diagram of the interactions between MQTT client, MQTT Broker and Data Server 19
2.3 Sequence diagram of the remote attestation process of MPU-based IoT devices. . . . . . . 20

3.1 Client architecture of the Internet Browsing Pilot. . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Server architecture of the Internet Browsing Pilot. . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Sequence diagram of the interactions between Client and Issuer . . . . . . . . . . . . . . . 31
3.4 Sequence diagram of the interactions between Client and Server. . . . . . . . . . . . . . . 32

4.1 Architecture of the Software Network Environments for Telco Operators Pilot. . . . . . . . . 37
4.2 Sequence diagram of the procedures for L2S-M installation and L2S-M CNF deployment. . 40
4.3 Sequence diagram of the procedure for quantum-secure IPsec tunnel setup. . . . . . . . . 41

List of Tables

1 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 IoT-based Digital Manufacturing Pilot requirements . . . . . . . . . . . . . . . . . . . . . . 13
2.2 IoT-based Digital Manufacturing Pilot specifications . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Internet Browsing Pilot requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Internet Browsing Pilot specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Software Network Environments for Telco Operators Pilot requirements . . . . . . . . . . . 33
4.2 Software Network Environments for Telco Operators Pilot specifications . . . . . . . . . . . 34



List of Acronyms

AK Attestation Key
API Application Programming Interface
BBS Boneh, Boyen, and Shacham
BLNS Bootle, Lyubashevsky, Nguyen, and Sorniotti
CA Certification Authority
CCIPS Centrally Controlled IPSec
CNF Container Network Function
COTS Commercial Off-the-Shelf
CRQC Cryptographically Relevant Quantum Computer
CSV Comma-Separated Values
DID Decentralized IDentifier
ECDSA Elliptic Curve Digital Signature Algorithm
EdDSA Edwards-curve Digital Signature Algorithm
EK Endorsement Key
ESP Encapsulating Security Payload
EU European Union
FAQ Frequently Asked Question
FESCo Fedora Engineering Steering Committee
fTPM firmware Trusted Platform Module
GDPR General Data Protection Regulation
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol over Secure Socket Layer
HW Hardware
I/O Input/Output
I2NSF Interface to Network Security Function
IKE Internet Key Exchange
IMA Integrity Measurement Architecture
IoT Internet of Things
IP Intellectual Property
IPsec IP Security
JPT JSON Proof Token
JSON JavaScript Object Notation
JWT JSON Web Token
K8s Kubernetes
KEM Key Encapsulation Method
L2S-M Link-Layer Secure connectivity for Microservice platforms
LMS Leighton-Micali Hash-Based Signature
MANO Management and Orchestration
MCU Micro-Controller Unit
ML-DSA Module-Lattice-Based Digital Signature Algorithm
ML-KEM Module-Lattice-Based Key-Encapsulation Mechanism
MPU Micro-Processor Unit
MQTT Message Queuing Telemetry Transport
NFV Network Functions Virtualization



NIST National Institute of Standards and Technology
NSS Network Security Services
NSS Network Security Services
OCSP On-line Certificate Status Protocol
ONOS Open Network Operating System
OP-TEE Open Portable Trusted Execution Environment
OS Operating System
PCR Platform Configuration Register
PKCS Public-Key Cryptography Standards
PKI Public-Key Infrastructure
PKIX Public-Key Infrastructure using X.509
PLC Programmable Logic Controller
PQ/T Post-Quantum/Traditional
PQ Post-Quantum
PQC Post-Quantum Cryptography
QKD Quantum Key Distribution
QUBIP Quantum-oriented Update to Browsers and Infrastructures for the Post-quantum transition
RA Remote Attestation
RAM Random Access Memory
RCA Root Certification Authority
REST REpresentational State Transfer
RoT Root of Trust
RTR Root of Trust for Reporting
RTS Root of Trust for Storage
SDN Software-Defined Networking
SE Secure Element
SLH-DSA Stateless Hash-Based Digital Signature Algorithm
SNI Server Name Indication
SotA State of the Art
SSI Self-Sovereign Identity
TCG Trusted Computing Group
TCP Transmission Control Protocol
TEE Trusted Execution Environment
TFS TeraFlow SDN
TLS Transport Layer Security
TPM Trusted Platform Module
UI User Interface
UX User eXperience
VC Verifiable Credential
VP Verifiable Presentation
VXLAN Virtual eXtensible Local Area Network
W3C World Wide Web Consortium
ZK Zero-Knowledge
ZKP Zero-Knowledge Proof



PUBLIC D2.1 Specifications of Pilot Demonstrators

1 Introduction

The QUBIP project focuses on the transition from traditional cryptography to Post-Quantum Cryptography
(PQC) of protocols, network, and systems we use today.

The two main goals of the project are:

1. to simplify the transition process and make it replicable through recommended practices, structured
support processes for industry and contributions to EU standardisation and policymaking;

2. to counter PQ threats as soon as possible.

The QUBIP project contributes to the definition of a replicable and reference transition process by maximis-
ing the return on experience from three practical transition exercises. The exercises involve the tailored
adoption of eight PQ building blocks into three main systems. These PQ building blocks, which transition
to PQC as been addressed in Deliverable D1.4, will be properly integrated into three pilot demonstrators
in relevant use cases to address system-level transition challenges. This document describes the system
specifications and requirements and the overall architecture of those three pilot demonstrators.

Before properly describing each pilot demonstrator and understanding the reasons behind their evaluation,
it is of value to remark the methodology followed by QUBIP, which is depicted in Figure 1.1.

Figure 1.1: Methodology of the QUBIP project: from building block to system level transition to PQC

The first and fundamental step is to continuously evaluate the State of the Art (SotA) of the Cryptograph-
ically Relevant Quantum Computers (CRQCs) and PQ algorithms to provide the partners relevant infor-
mation when selecting PQC at different levels and stages. This assessment, presented in Deliverable
D1.1 and subsequent updates, includes various technological implementations and today’s relevant PQ
algorithms. The feedback from this evaluation has supported and will support the transition of the eight
building blocks to PQC presented in Deliverable D1.4.

Then, the eight building blocks will be integrated into three pilot demonstrators:

1. Quantum-secure Internet of Things (IoT)-based Digital Manufacturing.
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PUBLIC D2.1 Specifications of Pilot Demonstrators

2. Quantum-secure Internet Browsing.

3. Quantum-secure Software Networks Environments for Telco Operators.

The combination of these heterogeneous building blocks into the three pilot demonstrators is expected to
raise a number of dependency issues, which will be resolved during the integration phase to generate fur-
ther knowledge about the transition process to PQC. This experience, together with appropriate evaluation
and validation activities of the systems, will be reflected in a replicable transition process to PQC.

Throughout this document, the keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL", are to be interpreted as
described in RFC-2119 [1].

This project has received funding from the European Union under the
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PUBLIC D2.1 Specifications of Pilot Demonstrators

2 Quantum-secure IoT-based Digital Manufacturing

The Quantum-secure IoT-based Digital Manufacturing pilot has been designed to test quantum-secure
data exchange between different IoT devices that typically comprise a connected digital manufacturing
system. In this pilot, both flavours of the same IoT device (i.e., MCU and MPU-based), are securely
connected with a central Data Server whose mission is to store and process critical data collected from
the field. The system is designed for:

• data acquisition from external sensors directly connected to IoT devices;

• quantum-secure communication between IoT devices and the Data Server at the transport layer;

• deployment of the Message Queuing Telemetry Transport (MQTT) protocol at application layer for
IoT data exchange;

• software integrity verification by means of a Remote Attestation (RA) protocol of Micro-Processor
Unit (MPU)-based IoT devices.

The pilot demonstrator also sets a Public-Key Infrastructure (PKI) with the following components:

• Certification Authority (CA): is a trusted entity responsible for issuing, managing, and revoking digital
certificates. It verifies the identity of entities requesting certificates and ensures the authenticity of
their public keys.

• Root Certification Authority (RCA): acts as an intermediary between the entities (i.e., IoT devices)
and the CA. It verifies the identity of devices before the CA issues a digital certificate. The RCA
does not issue certificates directly but plays a crucial role in the verification process.

• Digital Certificates: securely bind a public key with an entity in the system, e.g. IoT devices, Data
Server.

• Public and Private Keys: are used by system components for encryption, decryption, and authenti-
cation.

• Secure Element (SE): integrated within the IoT devices, it securely stores the private keys of the
MPU and Micro-Controller Unit (MCU), protecting them from unauthorized access. It also performs
key operations without exposing the private key, such as signing authentication tokens or decrypting
incoming messages.

• On-line Certificate Status Protocol (OCSP) responder: used during Transport Layer Security (TLS)
handshake by system entities to verify the validity of a certificate in real time.

• Attestation Agent: it uses the device’s private key, stored in the PQ firmware Trusted Platform Module
(fTPM), to sign an integrity report when requested by a Remote Verifier. The Remote Verifier uses
the device’s public key certificate to verify the authenticity of the report before evaluating it.

2.1 Requirements

Table 2.1 shows the requirements of the system to fulfill the objectives described above. In that sense, the
requirements can be organized as it follows:

• Req-DM#01 and Req-DM#02 are related to PKI management in terms of digital certificates and
OCSP verification.

• Req-DM#03 is related to the SE.

This project has received funding from the European Union under the
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PUBLIC D2.1 Specifications of Pilot Demonstrators

• Req-DM#04, Req-DM#05, Req-DM#06 and Req-DM#07 are the specific requirements of remote
attestation, highlighting the importance to verify whether MPU-based IoT devices can be trusted or
not through integrity verification techniques.

• Req-DM#08 and Req-DM#09 are related to data collection and exchange.

• Req-DM#10 defines the need to establish TLS channels that support quantum-secure communica-
tion between clients and servers.

• Req-DM#11 defines the need for an application protocol that is crucial for communication between
software applications.

• Req-DM#12 highlights the importance of adopting different cryptographic algorithms at transport and
application layers.

• Req-DM#13 defines the need for interoperability between MbedTLS and OpenSSL TLS implemen-
tations to ensure MCU and MPU-based IoT devices are interchangeable.

• Req-DM#14 highlights the importance of having a complete system documentation.

Table 2.1: IoT-based Digital Manufacturing Pilot requirements

Req.ID Name Description

Req-DM#01 Certificate Author-
ity

The CA MUST be able to generate and sign certificates that use
PQC.

Req-DM#02 OCSP Verification Digital certificates used in TLS protocol MUST be verified (by
means of validity) by the TLS client through OCSP.

Req-DM#03 Secure Element The SE MUST store the private key of the IoT device.

Req-DM#04 Integrity Verifica-
tion

The MPU-based IoT devices MUST be able to report on their
status of integrity.

Req-DM#05 Remote Verifier The Remote Verifier MUST have PQC support in order to check
the authenticity of the report sent by the Attestation Agent.

Req-DM#06 PQ fTPM The PQ fTPM running inside the Trusted Execution Environment
(TEE) MUST store the private part of the PQ key used to sign
the quote.

Req-DM#07 Attestation Agent The Attestation Agent MUST be able to get the PQ integrity
report and forward it to the Remote Verifier.

Req-DM#08 Data Collection The IoT device MUST be able to collect data from external sen-
sors (e.g., manufacturing, energy consumption, movement).

Req-DM#09 Data Exchange The IoT device and the Data Server MUST be able to exchange
data through secure channels.

Req-DM#10 Quantum-secure
TLS Channel

Quantum-secure TLS channel MUST be used between clients
and the server.

Req-DM#11 Application Clients and the Data Server MUST exchange data through an
application protocol suited for IoT devices.

Req-DM#12 Cryptographic
Algorithms

The system MUST support Post-Quantum/Traditional (PQ/T)
hybrid implementations of key exchange and digital signatures,
and quantum-secure encryption/decryption algorithms.

This project has received funding from the European Union under the
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Req.ID Name Description

Req-DM#13 Interoperability MbedTLS-based TLS clients MUST be compatible with
OpenSSL-based TLS servers.

Req-DM#14 Documentation Documentation covering the steps to setup and run all in-
stances.

2.2 Specifications

Table 2.2 shows the system specifications, based on the Table 2.1 of requirements.

Table 2.2: IoT-based Digital Manufacturing Pilot specifications

Spec.ID Name Description Req.ID

Spec-DM#01 Supported Certifi-
cates

The pilot supports PQ/T hybrid X.509 certificates. Req-DM#01

Spec-DM#02 Composite Certifi-
cates

Digital certificates support a hybrid cryptographic
scheme, incorporating both classical crypto-
graphic signatures (e.g., ECDSA) and PQC sig-
natures within a composite certificate structure.

Req-DM#01

Spec-DM#03 Multifactor Authen-
tication

The RCA uses multifactor authentication mecha-
nisms for device registration, such as public-key-
based challenge-response protocols and secure
communication channels (i.e., TLS).

Req-DM#01

Spec-DM#04 Traceability The RCA system logs registration attempts, en-
suring traceability of device identity and registra-
tion processes.

Req-DM#01

Spec-DM#05 Cryptographic
Binding

Device registration includes cryptographic bind-
ing of the device identity with the registration au-
thority, ensuring tamper resistance.

Req-DM#01

Spec-DM#06 OCSP The PKI implements an OCSP responder to pro-
vide real-time certificate validation.

Req-DM#02

Spec-DM#07 SE Storage The SE supports secure key generation, storage,
and usage, ensuring the private key never leaves
the SE unencrypted.

Req-DM#03

Spec-DM#08 Integrity Measure-
ment

The MPU-based IoT devices include an integrity
measurement mechanism that regularly checks
the state of system components (e.g., firmware,
software, configuration files).

Req-DM#04

Spec-DM#09 Integrity Storage Any integrity measurement is stored in the PQ
fTPM, protected from unauthorized modifications.

Req-DM#04

Spec-DM#10 PQ Secure Boot Each modifiable boot partition is authenti-
cated with Leighton-Micali Hash-Based Signature
(LMS) PQ algorithm by the subsequent one be-
fore being loaded.

Req-DM#04

This project has received funding from the European Union under the
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Spec.ID Name Description Req.ID

Spec-DM#11 Remote Verifier
Location

The Remote Verifier has direct communication
with the Attestation Agent.

Req-DM#05

Spec-DM#12 PQ Measured
Boot

The PQ fTPM creates integrity reports signed
with hash-based PQ algorithms.

Req-DM#06

Spec-DM#13 Attestation Agent The Attestation Agent requests generation of PQ-
quotes to the PQ fTPM and forwards them to-
gether with IMA measurement log to the Remote
Verifier.

Req-DM#07

Spec-DM#14 PLC Connection Both MPU-based and MCU-based IoT devices
are connected to Programmable Logic Con-
trollers (PLCs) through ModBus/Transmission
Control Protocol (TCP).

Req-DM#08

Spec-DM#15 MCU Data Acqui-
sition

100 byte payload. Req-DM#08

Spec-DM#16 MPU Data Acquisi-
tion

200 byte payload. Req-DM#08

Spec-DM#17 IoT Device with
Hybrid TLS

IoT devices uses TLS 1.3 with both classical and
PQ algorithms to establish secure channels.

Req-DM#09

Spec-DM#18 Server Data Stor-
age

The server provides data storage, either internally
or on an external data server.

Req-DM#09

Spec-DM#19 Client Definition IoT devices only act as clients at both transport
and application layers.

Req-DM#10

Spec-DM#20 Client Communi-
cation Protocol

The client uses a PQ/T hybrid TLS 1.3 to establish
secure communication channels.

Req-DM#10

Spec-DM#21 Server Communi-
cation Protocol

The server uses PQ/T hybrid TLS 1.3 to establish
secure communication channels.

Req-DM#10

Spec-DM#22 Application Proto-
col

Clients and the server exchange application data
through the MQTT protocol.

Req-DM#11

Spec-DM#23 MQTT Client –
MPU

The MQTT client supports OpenSSL integration. Req-DM#11

Spec-DM#24 MQTT Client –
MCU

The MQTT client supports MbedTLS integration. Req-DM#11

Spec-DM#25 MQTT Broker
OpenSSL support

The MQTT Broker supports OpenSSL 3.2.1. Req-DM#11

Spec-DM#26 MQTT Broker The MQTT Broker is based on Mosquitto broker. Req-DM#11

Spec-DM#27 MQTT Data Trans-
mission – MCU

1 MQTT message per second. Req-DM#11

Spec-DM#28 MQTT Data Trans-
mission – MPU

5 MQTT messages per second. Req-DM#11

This project has received funding from the European Union under the
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Spec.ID Name Description Req.ID

Spec-DM#29 KEM Algorithms The hybrid implementation of Key Encapsulation
Method (KEM) algorithms uses X25519 and ML-
KEM.

Req-DM#12

Spec-DM#30 Signature Algo-
rithms

The hybrid implementation of signature algo-
rithms uses EdDSA, ML-DSA and SLH-DSA.

Req-DM#12

Spec-DM#31 Cipher Algorithms AES-128, AES-256. Req-DM#12

Spec-DM#32 Hash Algorithms SHA-2, SHA-3, and their derivatives. Req-DM#12

Spec-DM#33 Interoperability MbedTLS-based and openSSL-based TLS end-
points uses the same PQ/T hybrid algorithms for
full interoperability.

Req-DM#13

Spec-DM#34 Client Documenta-
tion

Documentation covering the steps to setup and
run all instances of client applications and con-
nect to the server.

Req-DM#14

Spec-DM#35 Server Documen-
tation

Documentation covering the steps to setup and
run all instances at server side.

Req-DM#14

2.3 Architecture

The architecture of the IoT-based Digital Manufacturing pilot is depicted in Figure 2.1. This pilot relies
on connected IoT devices, which come in two flavours: MPU-based and MCU-based. Their designs are
detailed in Deliverable D1.4.

Apart from the differences in the HW platform, the main differences between the two flavours concern the
cryptographic library used and the internal communication interface with the SE:

• MPU-based devices: use the OpenSSL library and communicate via a shared memory-mapped
interface with the SE.

• MCU-based devices: use the MbedTLS cryptographic library and communicate via a serial interface
connection with the SE.

The IoT device, acting as a client, establishes a quantum-secure TLS channel with the MQTT Broker,
acting as a server. In that sense, the MQTT Broker acts as a central hub for managing messages be-
tween devices in the MQTT-based communication system. The system uses a publish/subscribe model,
in which the publisher (i.e., IoT devices) publishes messages to specific topics and the subscriber (i.e., the
Data Server) consumes the published messages. Both flavours of IoT devices collect data from specific
sensors through their Input/Output (I/O) interfaces. Once the quantum-secure communication channel is
established, the IoT devices send the collected data to the MQTT Broker, which in turn publishes data on
specific topics. The Data Server subscribes to the respective topics and consumes data.

In addition, a RA process is deployed to continuously monitor the health status of MPU-based IoT devices.
RA relies on the presence of a Remote Verifier, deployed on the same node as the MQTT broker or on
another node, that challenges IoT devices to prove their trustworthy status through a tamper-proof integrity
evidence. If all MPU-based IoT devices are assessed as trustworthy, the system continues to operate as
described above. If instead the Remote Verifier detects signs of compromise on one or more MPU-based
IoT devices, it promptly notifies the MQTT Broker that a device, with a particular device ID, has been
compromised. From that moment on, the MQTT Broker isolates the compromised device by refusing
connections from it (and closing any on-going connections), to prevent the injection into the Data Server
of data coming from tampered devices (i.e., the injection of potentially malicious data).
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Figure 2.1: Architecture of the IoT-based Digital Manufacturing Pilot.

2.3.1 Sequence of interactions

Figure 2.2 shows the sequence diagram of interactions among components involved in the data exchange.
The IoT devices establish a quantum-secure communication channel with the MQTT Broker using TLS
1.3. A quantum-secure communication channel can also be established between the MQTT Broker and
the Data Server.

At the application layer, the MQTT protocol rules the data exchange between IoT devices, MQTT Broker,
and Data Server, in accordance with the publish/subscribe model. The system works as it follows:

• Client Authentication: the MQTT client (i.e., IoT device) initiates a connection with the MQTT Broker
by providing a device ID, username, and password. Data is sent over the established TLS channel.
The MQTT Broker checks the provided credentials to authenticate the MQTT client.

• Authorization: Once authenticated, the MQTT Broker verifies what permissions the MQTT client
has, whether it can publish data, subscribe to topics, or perform both actions. This step ensures that
MQTT clients are only granted the level of access they need.

• Connection Acknowledgment: if authentication and authorization are successful, the MQTT Broker
sends an acknowledgment (ACK) signal to the MQTT client, indicating that the connection has been
established successfully.

• Subscription: The Data Server sends a subscription request to the MQTT Broker. Then, the MQTT
Broker internally adds this subscription and sends an ACK signal back to the Data Server.

• Data Publishing: The MQTT client can then publish the data to specific topics. The MQTT Broker,
acting as an intermediary, forwards the published data to all subscribers (i.e., the Data Server). This
ensures that the data reaches the intended destination, typically for storage or further processing.

Along with the application logic, the system supports procedures to ensure that MPU-based IoT devices,
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participating in the data collection and exchange, are trustworthy. This flavour of IoT devices can boot
only with a authentic and healthy system images, as a PQ Secure Boot is implemented to verify that the
system components, loaded at startup, come from an authorized provider and have not been tampered
with. The verification of authenticity of system components during boot is performed using PQ algorithms,
as described in the Deliverable D1.4. Furthermore, a PQ RA protocol is implemented and integrated into
the system to allow a Remote Verifier to check that an IoT device has performed a trusted boot, and that it
remains in a trustworthy status during its operation. To support this verification, a Measured Boot process
is implemented in the device firmware, meaning that a firmware component acquires the integrity measure
of the next firmware component after having loaded it into memory and before passing control of the device
to it. The integrity measurements collected during the Measured Boot are recorded in a data structure
compliant with Trusted Computing Group (TCG) Event Log [2], and stored in a secure memory area.
MPU-based IoT devices use a TEE, specifically Open Portable Trusted Execution Environment (OP-TEE),
to run a PQ fTPM. The PQ fTPM initializes the Platform Configuration Registers (PCRs), related to the
boot components (typically PCRs 0-9), with the corresponding measurements contained in the TCG Event
Log, acquired during Measured Boot. The chain of measurements acquired during Measured Boot is also
extended to the runtime of the device, by relying on the Integrity Measurement Architecture (IMA) module
provided by the Linux kernel. This module, enabled by appropriate policies, performs measurements on all
software components loaded during runtime and matching the configured IMA-policies. The fTPM driver
exposes the PQ fTPM running inside OP-TEE as a physical Trusted Platform Module (TPM) device that
can be used by other kernel modules and user space libraries and applications. The IMA module relies
on this fTPM driver to extend the integrity measurements, acquired during runtime, into a specific PCR
(typically PCR 10) of the PQ fTPM. The use of PQ fTPM and integrity measurements allows boot and
run-time trustworthiness to be verified by the Remote Verifier through a RA protocol.

Figure 2.3 shows the sequence diagram of the RA protocol for integrity verification. The Attestation Agent
in each MPU-based IoT device starts immediately after the initialization of the Linux user-space. Once
started, the Attestation Agent requests the PQ fTPM to generate an Attestation Key (AK), indicating a PQ
cryptographic algorithm among those supported by the PQ fTPM, as described in the Deliverable D1.4.
Then, it executes a protocol based on the activate credential command (supported by the TPM
specification), to securely register in the Remote Verifier the AK and the Endorsement Key (EK), which
identifies the PQ fTPM. At this point, the Attestation Agent waits to receive attestation challenges from
the Remote Verifier. An attestation challenge is an HTTP request containing a nonce, i.e., a statistically
unique random number needed to protect the protocol from replay attacks, the list of PCRs that the Remote
Verifier wishes to check, and the PCR bank, which indicates the hash algorithm used to extend the integrity
measurements. Upon receiving the attestation challenge, the Attestation Agent requests the PQ fTPM to
create a quote, indicating the nonce, the list of PCRs, their relative bank, and the handle to the PQ AK
previously generated. The PQ fTPM creates the quote, consisting of a PQ signature on the content of
the requested PCRs concatenated to the nonce, by using the secret part of the PQ AK. The Attestation
Agent then creates the integrity report, containing the quote generated by the PQ fTPM, the values of
PCRs signed in the quote, and the Measurement Log generated by IMA (whose integrity is protected and
verifiable through one of the PCRs), and sends it to the Remote Verifier. The Remote Verifier then performs
all the checks to verify that the information contained in the received integrity report is fresh, authentic, and
representative of a trustworthy device. In case an integrity failure is detected, the Remote Verifier notifies
the MQTT Broker to isolate the compromised IoT device. All communication between the Attestation Agent
and the Remote Verifier, and possibly between the Remote Verifier and the MQTT Broker, is protected by
a quantum-secure TLS channel.
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Figure 2.2: Sequence diagram of the interactions between MQTT client, MQTT Broker and Data Server
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Figure 2.3: Sequence diagram of the remote attestation process of MPU-based IoT devices.
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3 Quantum-secure Internet Browsing

The Quantum-secure Internet Browsing pilot is designed to explore a secure way to browse the Internet
by integrating advanced cryptographic methods to protect data and user identities against the additional
threats posed by the advent of CRQCs.

Key components of the pilot include OpenSSL and Network Security Services (NSS), which provide the
applications abstractions to handle encryption and secure communications. OpenSSL, with the QUBIP
provider, enables the use of PQ/T Hybrid algorithms for key exchange and authentication. The NSS
libraries often empower applications facing users on their client devices. In this pilot, in particular, NSS
lays the foundations for managing cryptographic operations within the Mozilla Firefox Internet browser,
ensuring secure interactions.

Overall, this pilot seeks to achieve the following goals:

• secure and privacy-preserving Internet browsing using PQ/T Hybrid methods;

• validation of PQC-enabled Decentralized IDentifiers (DIDs) and Verifiable Credentials (VCs) in a web
environment;

• testing realistic deployments of PQ/T Hybrid algorithms in existing applications through OpenSSL
and NSS.

Client components. The Client host includes several key building blocks, each serving a distinct func-
tion. IOTA Identity provides a decentralized identity management framework. Mozilla Firefox, an open-
source web browser renowned for its security and privacy features, relies on NSS to handle critical crypto-
graphic operations and secure communication protocols. NSS is a comprehensive library suite, originally
developed by Netscape, that supports cross-platform development of security-enabled applications, partic-
ularly for TLS, PKI, and cryptographic algorithms. The QUBIP Public-Key Cryptography Stan-
dards (PKCS) #11 Module interfaces with an external software library that implements PQC algo-
rithms, enabling TLS 1.3 support for PQ/T Hybrid key exchange and authentication (i.e., the Client appli-
cation can leverage PQ/T Hybrid PKIX certificates to ensure server-side authentication). Notably, QUBIP
does not create new PQC implementations, but rather allows the selection of arbitrary external implemen-
tations that meet with users’ specific performance and security requirements. Finally, Fedora Linux serves
as the operating system, providing a cutting-edge, secure, and flexible environment.

Server components. On the Server host, the building blocks include the Nginx web server, a high-
performance, open-source web and reverse proxy server recognized for its stability, low resource usage,
and scalability. The Verifier component is responsible for validating and authenticating digital signatures or
certificates, ensuring data integrity and authenticity. OpenSSL is a comprehensive, open-source toolkit that
implements TLS and other protocols while offering an extensive cryptography library. The QUBIP Provider
functions as the interface layer between OpenSSL and the external implementations, facilitating the inte-
gration of advanced PQ cryptographic functions. The QUBIP Provider ultimately enables the OpenSSL
stack to establish TLS 1.3 connections supporting PQ/T Hybrid key exchange and authentication. In par-
ticular, OpenSSL-based programs can leverage the capabilities of the QUBIP Provider to authenticate
and verify PQ/T Hybrid PKIX certificate chains. The PQC External Software/Hardware Implementation
combines software and/or specialized hardware to deploy PQC algorithms, enhancing security against
quantum threats. It is important to note that the implementations selected for the QUBIP NSS module can
be different from the ones chosen for the QUBIP OpenSSL Provider: as long as client and server share
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a common set of PQ/T Hybrid algorithms, the server use case and client use case could pick different
implementations for the same algorithm, granting an extra degree of freedom in selecting the performance
and security requirements that best suit different usage scenarios. Like on the Client host, Fedora Linux
serves as the operating system, providing a reliable platform for managing server-side applications.

3.1 Requirements

Table 3.1 shows the requirements of the pilot demonstrator. The requirements can be roughly divided into
three groups: internal technical requirements, deployment infrastructure requirements, and sociotechnical
requirements (those related to “human factors” such as documentation, education, and user feedback).
Req-IB#01 through Req-IB#08 are internal technical requirements; Req-IB#09 through Req-IB#14, as well
as Req-IB#17 and Req-IB#18, are deployment infrastructure requirements; Req-IB#15, Req-IB#16, Req-
IB#19, and Req-IB#20 are sociotechnical requirements. Req-IB#21 through Req-IB#23 bridge the latter
two categories, concerning the user-facing aspects of how the demonstrator is deployed and tested.

Table 3.1: Internet Browsing Pilot requirements

Req.ID Name Description

Req-IB#01 Issuer Service for the User to request, update, and revoke a VC.

Req-IB#02 Digital Wallet A wallet implemented as a browser extension to handle VCs,
DIDs and key material, and to generate VP (in plain and ZK
flavours) to authenticate to a Verifier.

Req-IB#03 Verifier Web application demonstrating TLS 1.3 server authentication
and SSI client authentication with PQC.

Req-IB#04 Identity Framework Library implementing identity management as in the SSI model,
in compliance with DID [3] and VC [4] W3C specifications.

Req-IB#05 JWT- & JPT-Based
Authentication

VPs and proofs MUST be exchanged in JWT [5] and JPT [6]
formats.

Req-IB#06 Cryptographic
Algorithms

Traditional and PQ implementation of algorithms for digital sig-
natures and ZKPs suitable for SSI management.

Req-IB#07 Quantum-Secure TLS
Channel

PQ TLS 1.3 channel between Holder & Issuer, and
Holder & Verifier. The TLS channel SHOULD ensure server
authentication via PQ/T Hybrid PKIX certificates.

Req-IB#08 Platform Support The main development and testing platform for the module and
the library integrations is Linux.

Req-IB#09 Server Instances Web server deployment infrastructure. A server instance in Eu-
rope and a server instance outside (presumably in USA). The
instances SHOULD have both IPv4 and IPv6 connectivity. The
instances SHOULD support multiple clients simultaneously.

Req-IB#10 Server Domains Subdomains. Several 3rd-level (and below, if necessary) sub-
domains SHOULD be created under the top project domain
qubip.eu (e.g., test1.qubip.eu, etc). Different subdo-
mains SHOULD be dedicated for different algorithm setups.
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Req.ID Name Description

Req-IB#11 Server Container Implement and maintain a Fedora Linux container suitable for
running the traditional and PQ/T-capable TLS server with mini-
mal end-user setup.

Req-IB#12 Client Instances Implement and maintain a repository for installation of all client
applications (Mozilla Firefox, Digital Wallet) and necessary li-
braries for running the pilot.

Req-IB#13 Client Live Image Implement a Linux live image suitable for running the client-side
traditional and PQ/T-capable applications with minimal end-user
setup.

Req-IB#14 TLS Connection
Generator Tool

Software to automatically open TLS connections to the servers
and maintain a given level of load to test the system with differ-
ent traffic loads at server side.

Req-IB#15 Server
Documentation

Documentation covering the steps to setup and run all instances
of server applications.

Req-IB#16 Client Documentation Documentation covering the steps to setup and run all instances
of client applications and connect to servers.

Req-IB#17 Benchmark Datalake Representation of the collected telemetry data and provide the
collected data in a well-known format suitable for data analysis.

Req-IB#18 Interoperability MbedTLS-based TLS clients (IoT nodes in chapter 2) MUST be
compatible with OpenSSL-based TLS servers.

Req-IB#19 Informed Consent Informed consent from the users involved in the tests in compli-
ance with GDPR.

Req-IB#20 Education &
Awareness

Provide users with information and resources to understand the
importance of PQC and the changes it brings to their online
experience. Offer guidance on new authentication methods, es-
pecially around the use and management of ZK VCs.

Req-IB#21 User Feedback Design user interfaces that clearly communicate the security
features enabled by PQC, without overwhelming the user with
technical details. Ensure that the additional steps or computa-
tional time required by PQC are minimized or clearly justified to
the user to maintain a positive UX.

Req-IB#22 Preconfigured Linux
OS

Provide a preconfigured Fedora Linux-based client live image
for the end-users to participate in the demonstrator. This is in-
tended to simplify the process and resources required, allow-
ing practically any personal computer or computers in computer
rooms to be used for testing.
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Req.ID Name Description

Req-IB#23 Playbook for End-
Users

Develop a detailed playbook that includes:

• Instructions for using the preconfigured Linux OS live im-
age.

• Steps for participating in the pilot, including how to per-
form tasks and use PQC-enabled browsers.

• Guidance on providing feedback and reporting issues.

3.2 Specifications

Table 3.2 shows the specifications of the pilot demonstrator, based on Table 3.1 which shows the require-
ments. Each specification is associated with a particular requirement, which is listed in the Req.ID column.
Most requirements have more than one associated specification, but each specification is only associated
with one requirement.

Table 3.2: Internet Browsing Pilot specifications

Spec.ID Name Description Req.ID

Spec-IB#01 User Registration Implement a user registration form to insert the
subject information used for issuing the VC. Im-
plement backend logic for VC creation.

Req-IB#01

Spec-IB#02 User Identity
Management

Users can authenticate themself using their VC.
Create a user profile page where users can view,
update, and revoke their VC. Implement backend
logic to update or revoke a VC.

Req-IB#01

Spec-IB#03 Backend APIs Backend exposes RESTful APIs to interact with
the frontend. APIs is well-documented. Use
Spec-IB#15 for SSI-related operations.

Req-IB#01

Spec-IB#04 Logging and
Monitoring

Backend logs relevant events and errors for trou-
bleshooting.

Req-IB#01

Spec-IB#05 Database Backend uses a relational or NoSQL database to
store application data.

Req-IB#01

Spec-IB#06 Identity Storage The extension must store VCs, DIDs and private
keys using IndexedDB. Encrypted at rest.

Req-IB#02

Spec-IB#07 User DID Operations User can create, update, and deactivate DIDs.
Use Spec-IB#15 for previous operations.

Req-IB#02

Spec-IB#08 User VC Operations The user can select a desired VC and present it
to a Verifier to access protected services. The
Digital Wallet must support both cleartext and ZK
VCs. Use Spec-IB#15 for SSI-related operations.

Req-IB#02
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Spec.ID Name Description Req.ID

Spec-IB#09 User Authentication User can test both non-authenticated and authen-
ticated services. User can use the Digital Wallet
to present VCs, which the Verifier verifies before
granting access to a service. Implement backend
logic for VCs verification.

Req-IB#03

Spec-IB#10 Feedback Page Page to indicate the security parameters of the
TLS 1.3 PQ/T Hybrid connection and the dis-
closed identity information for feedback purposes.

Req-IB#03

Spec-IB#11 Survey Page Web form to collect qualitative indicators of the
tested functionalities from the users.

Req-IB#02

Spec-IB#12 Backend APIs Backend exposes RESTful APIs to interact with
the frontend. APIs is well-documented. Use
Spec-IB#15 for SSI related operations.

Req-IB#03

Spec-IB#13 Logging and
Monitoring

Backend logs relevant events and errors for trou-
bleshooting.

Req-IB#03

Spec-IB#14 Database Backend uses a relational or NoSQL database to
store application data.

Req-IB#03

Spec-IB#15 Framework
Selection

The IOTA Identity framework, specifically de-
signed to comply with the DID and VC specifica-
tions. IOTA Identity is the target framework for
PQC transition.

Req-IB#04

Spec-IB#16 JWT/JPT Encoding JWT encoding is provided by IOTA Identity frame-
work Spec-IB#15. JPT encoding is provided by
json-proof-token library.

Req-IB#05

Spec-IB#17 Algorithms Traditional signature algorithm: Ed25519 imple-
mentation provided by iota-crypto in IOTA Iden-
tity framework Spec-IB#15. PQ signature algo-
rithms: NIST algorithm implementations provided
by liboqs. Traditional ZK algorithm: BBS+. PQ ZK
algorithm: BLNS. Both provided by ZKryptium li-
brary.

Req-IB#06

Spec-IB#18 PQ/T TLS 1.3 The OpenSSL and Mozilla Firefox TLS stacks
supports negotiating and using PQ/T Hybrid key
exchange and (server-side) authentication. The
protocol flow is fully compliant with TLS 1.3 (RFC-
8446 [7]). The protocol ensures server authenti-
cation via PQ/T Hybrid PKIX certificates.

Req-IB#07

Spec-IB#19 Flexible Algorithm
Selection

The loadable modules framework for the integra-
tion of PQC in TLS 1.3 is flexible enough to allow
Holder, Issuer, and Verifier to select their choice
of PQ/T schemes and backing implementations.

Req-IB#07
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Spec.ID Name Description Req.ID

Spec-IB#20 Crypto Libraries Implement the software (OpenSSL, OpenSSL
Provider, low-level library providing PQ algo-
rithms, NSS, Mozilla Firefox) supporting PQ algo-
rithms for Linux platform.

Req-IB#08

Spec-IB#21 Software
Repositories

Some components (liboqs and oqsprovider) are
already included within standard Fedora Linux re-
pos. Also OpenSSL, nginx, curl are a part of
Fedora Linux and are available for installation
using standard procedures. The other QUBIP-
specific software (a specific PQ-capable version
of NSS/Mozilla Firefox, QUBIP PQ Provider,
VC backend, VC Mozilla Firefox plugin) may or
may not be available on default Fedora Linux
repos depending on the QUBIP consortium de-
cision. These software components are avail-
able for installation through standard procedures
from 3rd-party Fedora Linux-compatible reposito-
ries according to the FESCo Third-Party Reposi-
tory Policy [8].

Req-IB#12

Spec-IB#22 Web Server 4 web servers in (Spain, Italy, Finland and
Czechia) + 1 (outside EU) PQ/T web servers
(Nginx-based) to test different network conditions
and request loads.

Req-IB#09

Spec-IB#23 IP Stacks Podman is the chosen containerization solution,
which natively supports both IPv4 and IPv6 net-
working.

Req-IB#09

Spec-IB#24 Test Subdomains Web servers configured to serve a different virtual
SNI server for each tested PQ/T Hybrid configu-
ration. They are subdomains of qubip.eu.

Req-IB#10

Spec-IB#25 Server Container Implement and maintain a Linux container based
on Fedora Linux, powered by Podman, which
runs a traditional and PQ/T-capable TLS server.
It requires minimal end-user setup.

Req-IB#11

Spec-IB#26 Client Live Image Implement and maintain a Fedora Linux-based
live image suitable for running the traditional and
PQ/T-capable applications with minimal end-user
setup.

Req-IB#13

Spec-IB#27 Server
Documentation

Document detailing internal deployment instruc-
tions for the web server to ensure consistent de-
ployments and avoid negative effects on the end-
user experience.

Req-IB#15

Spec-IB#28 Client
Documentation

Documentation aiming to minimize the manual
configuration required for end-users, but provid-
ing instructions on how to tune some parameters,
as needed.

Req-IB#16
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Spec.ID Name Description Req.ID

Spec-IB#29 TLS Connection
Generator Tool

Use established existing software to generate ar-
tificial TLS loads. Evaluate which tools serve us
better during the specification of the tests. Among
the options, we preliminarily include Apache
Bench and similar software.

Req-IB#14

Spec-IB#30 Data Benchmarking A set of publicly available files in CSV format con-
taining various measurements of connection/data
exchange using various PQ, Hybrid, and classic
algorithms.

Req-IB#17

Spec-IB#31 Interoperability The result is dependent on the standard pub-
lication timeline. The implementations in one
subpackage are interoperable. The implementa-
tions from different subpackages are interopera-
ble. There is no obligation about interoperabil-
ity with external platforms, but the interoperability
testing is performed and the results are available.

Req-IB#18

Spec-IB#32 Informed Consent
Document

Draft a comprehensive informed consent docu-
ment that clearly explains the purpose of the pilot,
the nature of the data being collected, how it will
be used, and the rights of the participants, includ-
ing their right to withdraw consent at any time.

Req-IB#19

Spec-IB#33 Compliance Check Ensure the consent form complies with GDPR
and other relevant data protection regulations.

Req-IB#19

Spec-IB#34 Educational
Materials

Develop/curate educational materials including
guides, FAQs, and videos that explain PQC, its
benefits, and how it affects internet browsing.

Req-IB#20

Spec-IB#35 Education &
Awareness Website

The QUBIP website hosts the educational re-
sources.

Req-IB#20

Spec-IB#36 UI Design Develop a landing web page for the experiments,
exposing to the end-users the details of key ex-
change and authentication properties for the con-
nection, with explicit indicators of PQ readiness
level.

Req-IB#21

Spec-IB#37 Feedback
Mechanism

Collecting end-user feedback on the demonstra-
tor, using a web form survey interface in compli-
ance with GDPR and other regulations.

Req-IB#21

Spec-IB#38 OS Selection A live image based on Fedora Linux Atomic Desk-
tops, customized with the software preconfigured
to run the end-user-facing components of the
demonstrator.

Req-IB#22
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Spec.ID Name Description Req.ID

Spec-IB#39 Playbook Content The playbook includes:

• Instructions on setting up the environment:
booting the live image, software installation
(if required), configuration and verification
steps.

• Instructions on the experiments: specific
step-by-step tasks, and performance log-
ging (if required).

• Instructions on the feedback procedure:
how to access surveys and questionnaires
(e.g., link to online forms at logout time),
and instructions for technical logs submis-
sion (if required).

• Instructions for reverting configuration
changes (if required).

• Guidance on providing feedback and re-
porting issues.

The playbook is delivered within the experiment
web pages, in a convenient way that does not dis-
rupt the execution of the experiments.

Req-IB#23

3.3 Architecture

The Internet Browsing pilot demonstrator adopts a classical client-server architecture.

In the experiments with the demonstrator, users will run a pre-configured Fedora Linux live image. Among
the software installed on the live image, there is the web browser Mozilla Firefox and a browser extension
that functions as a digital wallet, enabling users to use their self-sovereign identity for authentication pur-
poses. Because all the necessary tooling for the client demonstrator is packaged in a pre-configured live
image, users can run it on their own computers or on computers available at the experiment sites, without
any specialized hardware.

PQ/T Hybrid cryptography–capable web servers will serve web content and allow clients to connect via Ng-
inx, verifying the clients’ digital identity. OpenSSL enables PQ/T Hybrid TLS by using the QUBIP provider
to interface with a software implementation of the necessary algorithms for key exchange and authenti-
cation. The servers will be geographically distributed, to better simulate real-world conditions of Internet
browsing. In addition to the testing done with human users interacting with the servers through Mozilla
Firefox on the preconfigured live image, some automated testing and benchmarking will be performed to
assess how the servers perform under heavy TLS traffic loads.

3.3.1 Client architecture

Figure 3.1 shows the client architecture for the pilot demonstrator. The client runs Fedora Linux.

At the top level, the Mozilla Firefox browser runs with an extension installed that functions as a digital wallet
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Figure 3.1: Client architecture of the Internet Browsing Pilot.

for storing and managing VCs. The wallet extension interacts with the IOTA Identity library, allowing the
user to manage their self-sovereign identity.

At the middle level, Mozilla Firefox uses NSS to handle cryptographic operations. NSS provides PQ/T Hy-
brid key exchange and authentication in the TLS 1.3 protocol, and has a PKCS #11 module which uses
an external software library that implements PQC algorithms.

At the bottom level, the server communicates over the TLS 1.3 protocol using network peripherals.

3.3.2 Server architecture

Figure 3.2 shows the server architecture for the pilot demonstrator. The server runs Fedora Linux.

At the top level, a Nginx web server serves web content to clients, and authenticates incoming client
requests by communicating with the Verifier. The Verifier uses the IOTA Identity library in the verification
process of the client’ Verifiable Presentation (VP) or Zero-Knowledge (ZK) proof.

At the middle level, Nginx is backed by the TLS functionality provided by OpenSSL. Through the extensible
architecture of OpenSSL’s provider model, external implementations (both in software and in hardware) of
PQC algorithms are made available for use in the key exchange and authentication process. The QUBIP
provider serves as the interface layer between OpenSSL and the external implementations. OpenSSL and
Nginx are configured to support PQ/T Hybrid algorithms for key exchange and authentication.

At the bottom level, the server communicates over the TLS 1.3 protocol using network peripherals.
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Figure 3.2: Server architecture of the Internet Browsing Pilot.

3.3.3 Client–Issuer interactions

Figure 3.3 shows the interaction between a Client that wishes to obtain a VC and an Issuer that issues
VCs.

When requesting a VC from the Issuer, the Client already has a DID, and a key pair consisting of a secret
key SK and a public key PK.

The Client and Issuer perform a TLS 1.3 handshake, establishing a secure communication channel, which
provides server-side authentication using PQ/T Hybrid PKIX certificates. Then, the Client sends its DID
and requests a challenge string CHALLENGE. The Issuer replies with the CHALLENGE. The Client com-
putes a digital signature SIG over DID and CHALLENGE using his SK, and sends SIG to the Client, along
with the Claim(s) they wish to have included in the VC. The Issuer resolves the DID, verifies the SIG using
the Client’s PK, and verifies the Claim(s). If all checks are successful, the Issuer creates the VC and sends
it to the Client.

3.3.4 Client–Server interactions

Figure 3.4 shows the interaction between a Client and a Server that provides access to Hypertext Transfer
Protocol over Secure Socket Layer (HTTPS) services to Clients who present a valid VP or ZK proof.

When contacting the Server, the Client has a full self-sovereign identity made of a key pair, the DID, and a
VC.

The Client and Server perform a TLS 1.3 handshake, establishing a secure communication channel with
server only authentication, using PQ/T Hybrid PKIX certificates. Then, the Client performs his authen-
tication with the Server at application layer. The Client sends his DID and requests a challenge string
CHALLENGE. The Server replies with the CHALLENGE. The Client creates a VP or ZK proof and sends
it to the Server. The Server verifies it and responds to the Client to let it know whether the verification was
successful or not. If the verification was successful, the Client now has access to web services.
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[CHALLENGE]

Computes Signature
over DID and CHALLENGE
using SK

[Signature, Claim(s)]

Resolves DID
Signature Verification
Claim(s) Verification
VC Creation

[Verifiable Credentials (VC)]

+ Noteworthy extensions sent in the message.
* Optional or situation-dependent messages/extensions.
{} Messages protected with keys derived from ‘<sender>_handshake_traffic_secret‘.
[] Messages protected with keys derived from ‘<sender>_application_traffic_secret‘.

Figure 3.3: Sequence diagram of the interactions between Client and Issuer
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Client

Client

Server

Server

Client Identity {VC, DID, (SK, PK)}

TLS 1.3 HandShake

↓ Key Exchange ↓

ClientHello
+ key_share
+ signature_algorithms
+ psk_key_exchange_modes
+ pre_shared_key

ServerHello
+ key_share
+ pre_shared_key

↓ Server Parameters ↓

{EncryptedExtensions}

↓ Authentication ↓

{Certificate*}

{CertificateVerify*}

{Finished}

{Finished}

↓ TLS 1.3 Application Data Records ↓

{Req: (CHALLENGE), DID}

{CHALLENGE}
Creation of
Verifiable Presentation (VP)
or Proof

{VP/Proof} Verifies VP/Proof

{Verification Response (Yes/No)}

↓ Access to HTTPS Services ↓

+ Noteworthy extensions sent in the message.
* Optional or situation-dependent messages/extensions.
{} Messages protected with keys derived from ‘<sender>_handshake_traffic_secret‘.
[] Messages protected with keys derived from ‘<sender>_application_traffic_secret‘.

Figure 3.4: Sequence diagram of the interactions between Client and Server.
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4 Quantum-secure Software Network Environments for Telco Operators

This pilot is designed to address the transition to PQC of the software environments adopted by telecom-
munications operators and network providers. Given the complexity of these environments, two key as-
pects have been the focus of attention. First, we must consider the fact of the massive adoption is happen-
ing around the new relevant technologies of network virtualization architectures, namely Network Functions
Virtualization (NFV), and the ability to program the network, namely Software-Defined Networking (SDN).
This type of network architecture is characterized by the decoupling of the control plane and the data plane,
giving the ability to program the network control. Second, considering that these architectures are based
in data centers, it is realistic to integrate complementary transition technologies like Quantum Key Distri-
bution (QKD), which necessitates the implementation of physical systems that can be hosted within those
data centers. Concerning the first aspect, the pilot demonstrator focuses on how to align this transition
with reference solutions such as container-based virtualization and its secure interconnectivity in the data
plane. Concerning the second aspect, the pilot demonstrator focuses on hybridization strategies between
PQC and QKD, and on applying them programmatically to the interconnections of virtual nodes. Both as-
pects are addressed starting from the adoption of the Internet Key Exchange (IKE)-less IP Security (IPsec)
building block designed in WP1 and addressed in Deliverable D1.4.

4.1 Requirements

The requirements are a set of demanded needs required to setup the software telco environment and are
based on the assumption that the IKE-less IPsec building block from WP1 exists. These requirements are
collected in Table 4.1.

The first five requirements (Req-TE#01 – Req-TE#05) identify the needs related to the architectures ex-
pected in telco environments. This includes consideration of the network virtualisation (NFV) and network
scheduling (SDN) paradigms to make the transition to PQC compatible with existing solutions. Req-TE#06
and Req-TE#07 focus on the physical aspects of telco environments, i.e., physical perimeter protection
(e.g., Data Centers), and the assumption that generic server models currently in use will continue to be
necessary. Req-TE#08 emphasises the need to apply in-use standards wherever possible. Req-TE#09
aims to delimit the scope of the pilot demonstrator to the fundamental risk identified today, the data plane,
especially when traffic circulates between security domains. Req-TE#10, Req-TE#11, and Req-TE#12
ensure the integration of QKD, identity management, and integrity verification in the pilot demonstrator as
an integral part of the strategy for transition to PQC.

Table 4.1: Software Network Environments for Telco Operators Pilot requirements

Req.ID Name Description

Req-TE#01 Containers on
Bare-metal

Native container deployment on bare metal needed for attesta-
tion compatibility, SHOULD avoid the use of virtual machines
that cannot guarantee the attestation mechanism.

Req-TE#02 CNF-based Mod-
ules

All modules used in the pilot SHOULD be based on Container
Network Function (CNF).
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Req.ID Name Description

Req-TE#03 NFV Management High level of management and orchestration for the deployment
of the different CNFs SHOULD be managed using state-of-the-
art solutions supported by Telcos.

Req-TE#04 SDN SDN approach SHOULD be applied including a control plane
post quantum transition aware for the data plane.

Req-TE#05 Overlay Network Data plane connectivity between CNFs SHOULD happen in an
overlay network that abstracts the quantum secure connectivity.

Req-TE#06 COTS Solutions SHOULD be compatible with telco environment Com-
mercial Off-the-Shelf (COTS) servers and standard architec-
tures in cloud and data centers.

Req-TE#07 Environment Secu-
rity

QKD system and COTS server SHOULD support logical and
physical security equivalent to telco facilities environment.

Req-TE#08 Standardized Inter-
faces & Protocols

Standardized interfaces and protocols SHOULD be used when
are available versus proprietaries ones, in management, con-
trol, and data plane.

Req-TE#09 Data Plane Secu-
rity

Quantum risk of Store now and decrypt later attacks SHOULD
be mitigated in the data plane Telco connectivity between CNFs.

Req-TE#10 QKD Connectivity QKD links and associated data channel availability is needed to
generate quantum secure keys.

Req-TE#11 Integrity Verifica-
tion

Support of software based PQC solutions for integrity verifica-
tion.

Req-TE#12 OCSP Verification Digital certificates used in TLS protocol MUST be verified (by
means of validity) by the TLS client through OCSP.

4.2 Specifications

Table 4.2 details the list of system specifications based on the requirements in Table 4.1. The Table
explains how to meet each requirement through one or more specifications.

Table 4.2: Software Network Environments for Telco Operators Pilot specifications

Spec.ID Name Description Req.ID

Spec-TE#01 Kubernetes Kubernetes management solution using bare
metal approach for attestation compatibility.

Req-TE#01

Spec-TE#02 CNFs based on
Kubernetes Pods

Use of Pod compatible with Kubernetes manage-
ment solution as CNFs.

Req-TE#02

Spec-TE#03 Open NFV MANO Orchestration of the deployment of the different
VNFs is managed using ETSI NFV Management
and Orchestration (MANO) approach and Open
Source MANO.

Req-TE#03

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
34



PUBLIC D2.1 Specifications of Pilot Demonstrators

Spec.ID Name Description Req.ID

Spec-TE#04 Open SDN PQ transition management triggered by a SDN
application approach, over a open source SDN
controller (TFS, ONOS, etc.).

Req-TE#04

Spec-TE#05 Node Connectivity Connectivity between different Kubernetes nodes
uses a IPsec quantum secure solution at node
level.

Req-TE#05

Spec-TE#06 CNF Connectivity Connectivity between CNF or pods in different
Kubernetes nodes use an overlay network pro-
vided by Link-Layer Secure connectivity for Mi-
croservice platforms (L2S-M) software switch on
demand.

Req-TE#05

Spec-TE#07 COTS HW Telco
Servers

Servers in the pilot are similar to the ones used
in telco environment in term of resources (RAM,
cores, network interfaces), type (rack mounted)
and connectivity with physical switches.

Req-TE#06

Spec-TE#08 COTS Processors Intel x86 architecture, alternatively others can be
considered.

Req-TE#06

Spec-TE#09 Linux System Telco environment COTS servers are deployed
using standards Linux distributions as operative
system and supporting Linux kernel IPsec.

Req-TE#06

Spec-TE#10 Security Telco physical environment is in place, includ-
ing security mechanism, such as physical ac-
cess control and monitoring for QKD system and
COTS server.

Req-TE#07

Spec-TE#11 Key Delivery Key delivery between components is based on
ETSI-004 standard.

Req-TE#08

Spec-TE#12 Control Plane
Configuration

Control plane configuration for IPsec based on
I2NSF interface (RFC-9061 [9]).

Req-TE#08

Spec-TE#13 NFV Deploy Control plane deployment of CNF based on ETSI
NFV SOL005 [10]

Req-TE#08

Spec-TE#14 Ciphering Algo-
rithms

Configurable on demand type and length sym-
metric algorithms supported by IPsec Encapsu-
lating Security Payload (ESP) based on AES.

Req-TE#09

Spec-TE#15 Integrity Algo-
rithms

Configurable on demand type and length hash
algorithms supported by IPsec ESP based on
SHA2.

Req-TE#09

Spec-TE#16 Key Exchange Al-
gorithms

Configurable on demand type and length KEM al-
gorithms, including ML-KEM.

Req-TE#09

Spec-TE#17 Hybridization
Agility

Configurable on demand type and length for hy-
bridisation options (classical, PQC, QKD) for Key
exchange to be used for CNF communication
over IPsec.

Req-TE#09
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Spec.ID Name Description Req.ID

Spec-TE#18 QKD QKD system (pair) or emulated one is available
and operative between 2 Kubernetes (K8s) nodes
or clusters.

Req-TE#10

Spec-TE#19 Free-Space Chan-
nel Link

Implementation of a free-space optical channel
for QKD, with a horizontal alignment and a maxi-
mum distance of 300 meters.

Req-TE#10

Spec-TE#20 Quantum Data
Laser Specifica-
tions

Utilization of an 850nm laser with 0.001mW
power for transmitting quantum data between the
QKD system’s transmitter and receiver.

Req-TE#10

Spec-TE#21 Aiming Laser
Specifications

Employment of a 785nm laser with 100mW power
for aiming and synchronization purposes within
the QKD system, facilitating accurate alignment
of the free-space link.

Req-TE#10

Spec-TE#22 Error Correction
and Key Distillation

Implementation of error correction algorithms to
distil the quantum key from the raw key material
obtained through the QKD process.

Req-TE#10

Spec-TE#23 Secure Boot Verify signature over firmware and OS and even-
tually stop boot in case of failure.

Req-TE#11

Spec-TE#24 Measured Boot Measure and securely store in Root of Trust for
Storage (RTS) all software components from boot
up to OS.

Req-TE#11

Spec-TE#25 TPM HW TPM2.0 chip compliant with TCG standard to
provide cryptographic identity, RTS and Root of
Trust for Reporting (RTR) in classical algorithms.

Req-TE#11

Spec-TE#26 Remote Attesta-
tion

RA protocol for device enrolment and periodic at-
testation is used.

Req-TE#11

Spec-TE#27 Attestation Agent Agent running on COTS server for device enroll-
ment and responding to attestation requests.

Req-TE#11

Spec-TE#28 Attestation Service Trust manager for COTS server enrollment,
golden DB management, periodic attestation, sta-
tus reporting.

Req-TE#11

Spec-TE#29 IMA Linux version with support IMA module. Req-TE#11

Spec-TE#30 Integrity PQ Algo-
rithms

Combine TPM with software PQC algorithms over
the assumption of physical security (Req-TE#07).

Req-TE#11

Spec-TE#31 OCSP The PKI implements an OCSP responder to pro-
vide real-time certificate validation.

Req-TE#12

4.3 Architecture

The system is developed to secure the communications between two or more Pods/virtualised workloads
in K8s clusters. The overall architecture, depicted in Figure 4.1, consists of a K8s cluster with the L2S-M
solution already installed. This K8s operator (i.e., a software able to extend K8s management function-
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Figure 4.1: Architecture of the Software Network Environments for Telco Operators Pilot.

alities [11]) is responsible for enabling the creation of virtual networks that isolate traffic between Pods
on K8s clusters. In addition, the L2S-M interacts with the Centrally Controlled IPSec (CCIPS) module to
configure IPsec tunnels between nodes of the K8s cluster, and to ensure that the communications be-
tween Pods/virtualised workloads use a quantum-secure channel. Overall, the system provides isolated
and secure communications all over the K8s cluster. The architecture can be split in two different sections
related to the functionalities in the K8s Controller Node and in K8s Worker Nodes.

The elements in the K8s Controller Node (i.e., where all K8s management and control functionalities are
located) are the following:

• L2S-M Controller: is in charge of managing virtual networks within the cluster, including their cre-
ation, management and deletion. Furthermore, this element signals the deployment of the switching
functionalities within the K8s Worker Nodes to take advantage of the IPsec tunnels for enabling
secure communications.

• SDN Controller: configures the forwarding tables of the virtual switches in the K8s Worker Nodes.
This configuration, based on the OpenFlow protocol specification [12], is triggered from the L2S-M
Controller based on the Pods included in the virtual network.

• CCIPS Controller: is in charge of coordinating the CCIPS operations in the system. It interacts with
the L2S-M Controller to start the setup of IPsec tunnels between the K8s Worker Nodes.

• Trust Manager: coordinates the authentication and integrity verification of the software components
in the K8s Worker Nodes.

The elements in the K8s Worker Nodes (i.e., the nodes that are used to deploy the K8s Pods/virtualised
workloads in a K8s cluster) are the following:

• L2S-M Switch: is a virtual switch in charge of forwarding traffic to/from the Pods based on the
configurations sent from the L2S-M controller The virtual switch includes a VXLAN [13] interface to
connect to other L2S-M switches located in other K8s Worker Nodes.

• CCIPS Module: it includes the functionalities to establish quantum-secure IPsec tunnels between
the K8s Worker Nodes. The full design of this module is described in Deliverable D1.4.
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4.3.1 Sequence of interactions

Figures 4.2 and 4.3 shows the interactions between the elements of the pilot architecture. The sequence
diagrams show two main processes: L2S-M installation, and L2S-M CNF deployment.

L2S-M installation

The first process consists on the installation of the L2S-M operator in the K8s cluster. These are the four
steps of the process:

1. L2S-M operator installation in the K8s Controller Node: the platform owner starts the installation
process by deploying the L2S-M Kubernetes operator and the SDN Controller in the K8s node. This
installation is performed with the standard command line interface of K8s.

2. Deploy & configure L2S-M overlay: L2S-M proceeds to configure the overlay used to communicate
between the Pods deployed in the different K8s Worker Nodes.

To do so, L2S-M reads the overlay configuration and sends an instruction to the K8s Worker Nodes
to deploy their respective L2S-M virtual switches. Furthermore, the L2S-M Controller instructs the
K8s Worker Nodes to create and configure the VXLAN endpoints to establish the communication
between the nodes, and attach the endpoint to the L2S-M virtual switch. As a result, the L2S-M
operator is able to isolate the traffic exchanged between Pods, regardless of whether they are on the
same or different nodes within the K8s cluster. At this stage, L2S-M provides a solution for isolating
communications by using the overlay, but it does not yet provide secure communications.

3. Configuration of quantum-secure IPsec tunnel between K8s Worker Nodes: once the L2S-M deploy-
ment and configuration is completed, the L2S-M Controller signals the CCIPS Controller to start the
configuration of the IPsec tunnel between the specified K8s Worker Nodes, using keys that are a
proper hybridization of keys generated by PQ KEM and QKD as detailed in Deliverable D1.4. The
CCIPS Controller takes care of interacting with Trust Manager to verify identities and confirm the
valid state of the K8s Worker Nodes.

4. Setup of quantum-secure IPsec tunnel between K8s Worker Nodes: in this step, the CCIPS Con-
troller establishes the IPsec tunnel. The steps involved are detailed in Figure 4.3. When the process
is complete, the CCIPS Controller notifies the L2S-M Controller that the quantum-secure IPsec tun-
nel has been successfully established between the selected nodes, completing the L2S-M installa-
tion process.

The procedure to create the quantum-secure IPsec tunnel to interconnect Pods/virtualised workloads is
depicted in Figure 4.3. These are the involved steps:

1. Attestation request: upon receiving a quantum-link configure setup message from the L2S-M Con-
troller, the CCIPS Controller identifies the nodes involved in each link (the L2S-M Controller may ask
for the configuration of multiple links) and requests the Trust Manager to verify their trustworthiness.

2. Verify endpoint request: upon receiving the request, the Trust Manager interacts with the Attestation
Agent in each node to verify their trustworthiness by means of a remote attestation protocol.

3. Verification confirmation: if both agents were successfully verified, and therefore authenticated, the
Trust Manager sends a confirmation message to the CCIPS Controller to proceed with the IPsec
tunnel setup between the trusted nodes.

4. IPsec tunnel request: the CCIPS Controller sends an IPsec tunnel requests towards each CCIPS
Agent in the tunnel endpoint nodes.

5. Key request: both CCIPS Agents request to their local PQC/QKD Hybridisation module the corre-
sponding keys. The keys can be generated and agreed in two different ways (or combining both
methods):
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• via the QKD Module in each node,

• via the PQC/QKD Hybridisation module using also PQ KEM algorithms.

Once the keys are generated, the PQC/QKD Hybridization module sends the key to their local CCIPS
Agent.

6. IPsec Tunnel Activation: The CCIPS Agent proceeds to include the keys in the respective databases
and activate the IPsec Tunnel.

7. Activated IPsec tunnel confirmation: finally, the CCIPS Agent in each endpoint node of the tunnel
informs the CCIPS Controller that the tunnel has been correctly activated, enabling secure commu-
nications between nodes.

L2S-M CNF deployment

The second process consists on the deployment of CNF within the K8s cluster. With the assist of both
CCIPS and L2S-M modules, the Pods deployed in different K8s Worker Nodes communicate in an isolated
(provided by the link-layer virtual networks in L2S-M) and secure (provided by the quantum-secure IPsec
tunnel between nodes) manner. Figure 4.2 shows the steps involved:

1. Create virtual network: the K8s administrator creates the virtual networks needed in the cluster,
using K8s command line and registering them as a K8s resources in the cluster.

2. Deploy Pods in the virtual network: the user deploys the Pods that need to communicate through the
virtual network. The L2S-M Controller assigns an interface in the L2S-M Switch in the K8s Worker
Nodes, which in turn enables the deployment of the Pods attached to that interface (the deployment
was triggered by the K8s Controller).

3. Configure virtual switch: once the Pods were deployed and attached to the corresponding interfaces
in the L2S-M Switch, the L2S-M Controller signals the SDN Controller to configure the forwarding
tables of switches on the cluster, using the OpenFlow 1.3 protocol [12] to connect all Pods in the
virtual network, thus enabling their isolated communications.

4. Secure communication between Pods: Since all communications links in the overlay are secured by
the CCIPS module, Pods can communicate among themselves in a secure manner, while isolating
their data planes from the rest of Pods in the K8s cluster.
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Figure 4.2: Sequence diagram of the procedures for L2S-M installation and L2S-M CNF deployment.
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5 Conclusions

This document describes the three pilot demonstrators of the QUBIP project, detailing the system re-
quirements and specifications, and the overall architectures. These pilot demonstrators will be built by
integrating the eight PQ building blocks designed and developed in WP1. The integration of the building
blocks will generate a cascade of issues that are an integral part of the transition process to PQC. All
issues will be promptly resolved and documented to produce a knowledge base, one of the main outputs
of the QUBIP project.
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