
Horizon Europe

QUANTUM-ORIENTED UPDATE TO BROWSERS AND INFRASTRUCTURES
FOR THE PQ TRANSITION (QUBIP)

Analysis and design of PQ building blocks

Deliverable number: D1.4

Version 1.0

This project has received funding from the European Union under the
Horizon Europe framework programme [grant agreement no. 101119746].

Ref. Ares(2024)5788163 - 12/08/2024

Project Acronym: QUBIP
Project Full Title: Quantum-oriented Update to Browsers and Infrastructures for the PQ transition
Call: HORIZON-CL3-2022-CS-01
Topic: HORIZON-CL3-2022-CS-01-03
Type of Action: HORIZON-IA
Grant Number: 101119746
Project URL: https://www.qubip.eu
Start date: 1 September 2023
Duration: 36 months

Editors: Antonio Lioy – POLITO

Deliverable nature: Report (R)

Dissemination level: Public (PU)

Contractual Delivery Date: 31 August 2024

Actual Delivery Date 12 August 2024

Number of pages: 80

Keywords: cybersecurity, post-quantum, cryptography

Contributors: Andrea Vesco – LINKS
Davide Margaria – LINKS
Alberto Solavagione – LINKS
Alessandro Pino – LINKS
Grazia D’Onghia – POLITO
Silvia Sisinni – POLITO
Davide Bellizia – TELSY
Agostino Sette – TELSY
Alberto Battistello – SECPAT
Maria Chiara Molteni – SECPAT
Eros Camacho-Ruiz – CSIC
Piedad Brox – CSIC
Antonio Pastor – TID
Diego Lopez – TID
Ulises Pastor – TID
Javier Faba – UPM
Juan Pedro Brito – UPM
Nicola Tuveri – TAU
Daniel Luoma – TAU
Akif Mehmood – TAU
Alex Shaindlin – TAU
Dmitry Belyavskiy – REDHAT
Sahana Prasad – REDHAT

Peer review: Andrea Pozzi – SMART
Javier Faba – UPM

Security review: Estanislao Fernández – TID
Juha Nurmi – TAU

Approved by: ALL partners

https://www.qubip.eu

Table 1: Document revision history

Issue Date Version Comments

21/03/2024 0.1 Initial table of contents

10/06/2024 0.2 First draft version, for internal review

20/06/2024 0.9 Second draft version, for review by SAB

12/08/2024 1.0 Final version, for submission

Abstract

This document represents the Deliverable D1.4 of the Quantum-oriented Update to Browsers and Infras-
tructures for the Post-quantum transition (QUBIP) project. It describes the requirements and the design of
the Post-Quantum (PQ) building blocks. They will be integrated into the three different pilot demonstrators.

Contents

1. Introduction 12

2. Public-Key Infrastructure 13
2.1. Introduction . 13
2.2. Requirements . 14
2.3. Current Trends . 15

2.3.1. Recommendations . 15
2.3.2. Existing Implementations . 16

2.4. Design . 17

3. Integrity Verification 19
3.1. Introduction . 19
3.2. Requirements . 19
3.3. Design . 20

3.3.1. Secure Boot . 20
3.3.2. Measured Boot . 21
3.3.3. Remote Attestation . 22

4. IoT devices 24
4.1. Introduction . 24

4.1.1. MCU-based IoT Device . 24
4.1.2. MPU-based IoT Device . 25
4.1.3. Secure Element . 26

4.2. Requirements . 27
4.3. Design . 28

5. Cryptographic Libraries 30
5.1. Introduction . 30
5.2. Requirements . 31

5.2.1. OpenSSL Providers: Requirements . 32
5.2.2. NSS: Requirements . 33
5.2.3. NSS Modules: Requirements . 33
5.2.4. Mbed-TLS: Requirements . 34

5.3. Design . 34
5.3.1. OpenSSL Providers: Design . 34
5.3.2. NSS: Design . 37
5.3.3. NSS Modules: Design . 37
5.3.4. Mbed-TLS: Design . 39

6. Operating System 41
6.1. Introduction . 41
6.2. Requirements . 41
6.3. Design . 42

7. Firefox Browser 43
7.1. Introduction . 43
7.2. Requirements . 43
7.3. Design . 43

8. Self-Sovereign Identity 45
8.1. Introduction . 45
8.2. Requirements . 47

8.2.1. Plaintext Verifiable Credentials . 47
8.2.2. Anonymous Verifiable Credentials . 48
8.2.3. Revocation Mechanism for Anonymous Verifiable Credentials 49

8.3. Design . 50
8.3.1. Plaintext Verifiable Credentials . 50
8.3.2. Anonymous Verifiable Credentials . 52
8.3.3. Revocation Mechanism for Anonymous Verifiable Credentials 53

9. IKE-less IPsec 55
9.1. Introduction . 55

9.1.1. Centrally Controlled IPSec . 55
9.1.2. Hybridization . 56
9.1.3. Quantum Key Distribution . 58
9.1.4. Remote Attestation . 59

9.2. Requirements . 59
9.3. Design . 60

10.Conclusions 63

Appendix A. DID Document, VC and VP Data Models 72

Appendix B. Experimental Evaluation of NIST Selected PQ Signature Algorithms 74

Appendix C. BLNS Framework 75
C.1. Notation . 75
C.2. BLNS Protocols . 75
C.3. Data . 76
C.4. Issuer’s Functions . 76
C.5. Holders’s Functions . 76
C.6. Verifier’s Functions . 77
C.7. Other Functions . 77

Appendix D. Experimental Evaluation of PQ Hash Based Signature Algorithms 78

List of Figures

4.1. Two different design flavours of the IoT device. 28

8.1. The Self-Sovereign Identity reference model. 45
8.2. BLNS high-level architecture, involved functions and dependencies 54

9.1. IPsec and IKE architecture. 55
9.2. IPsec IKE-less model from RFC-9061 [1]. 56
9.3. Overall design of the QKD/PQC hybrid IKE-less IPSec building block. 61

C.1. BLNS Issuing protocol . 75
C.2. BLNS Verification protocol . 76

List of Tables

1. Document revision history . 4

2.1. PQ PKI Requirements . 14

3.1. PQ Integrity Verification Requirements . 20

4.1. MCU-based IoT device requirements . 27
4.2. MPU-based IoT device requirements . 27
4.3. SE requirements . 27

5.1. OpenSSL Providers requirements . 32
5.2. NSS requirements . 33
5.3. NSS Modules requirements . 33
5.4. Mbed-TLS requirements . 34

7.1. Firefox browser requirements . 43

8.1. Requirements for SSI with plaintext VC . 48

9.1. IPsec IKE-less requirements . 59
9.2. Remote Attestation PQ requirements for IPsec IKE-less. 60

B.1. Performance of liboqs implementations of NIST selected PQ digital signature algorithms
on a Intel® Core™ i7-1255U 1.70 GHz, Intel Turbo Boost disabled, RAM 24.0 GB 3200
MHz; keypair and signature generation and signature verification values are the average
over 1000 runs. 74

D.1. Performance of LMS and SPHINCS+ algorithms [2]. 78
D.2. Performance comparison of LMS and XMSS on ARM Cortex-M4 using SHA-256 as hash

function [3]. 79

List of Acronyms

ABI Application Binary Interface
AES Advance Encryption Standard
ANSSI Agence Nationale de la Sécurité des Systèmes d’Information [French Cybersecurity Agency]
APB Advanced Peripheral Bus
API Application Programming Interface
ATF ARM Trusted Firmware
AXI Advanced eXtensible Interface
BLNS Bootle, Lyubashevsky, Nguyen, and Sorniotti
BOM Bill-Of-Materials
BSI Bundesamt für Sicherheit in der Informationstechnik [Federal Office for Information Security]
CA Certification Authority
CCN Centro Criptológico Nacional
CCIPS Centrally Controlled IPSec
CLI Command Line Interface
CNSA 2.0 Commercial National Security Algorithm Suite 2.0
CPU Central Processing Unit
CRL Certificate Revocation List
CRQC Cryptographically Relevant Quantum Computer
CRTM Core Root of Trust for Measurement
CSR Certificate Signing Request
CTS Commit-Transferable Signatures
DID Decentralized IDentifier
DLT Distributed Ledger Technology
DTLS Datagram Transport Layer Security
ECC Elliptic-Curve Cryptography
EMV Europay, Mastercard, and Visa
EU European Union
FFI Foreign Function Interface
FPGA Field Programmable Gate Array
FSBL First Stage Bootloader
fTPM firmware Trusted Platform Module
GSMA Global System for Mobile communications Association
GUI Graphical User Interface
HBS Hash-Based Signature
HSM Hardware Security Module
HW Hardware
I2C Inter Integrated Circuit
I2NSF Interface to Network Security Function
IETF Internet Engineering Task Force
IKE Internet Key Exchange
IMA Integrity Measurement Architecture
IoT Internet of Things
IP Internet Protocol
IPsec IP Security

ISISf Inhomogeneous SISf
JWK JSON Web Key
JSON JavaScript Object Notation
KDF Key Derivation Function
KEM Key Encapsulation Method
LDPC Low Density Parity Check
LMS Leighton-Micali Hash-Based Signature
LWE Learning with Errors
MCU Micro-Controller Unit
MiTM Man-in-The-Middle
ML-DSA Module-Lattice-Based Digital Signature Algorithm
ML-KEM Module-Lattice-Based Key-Encapsulation Mechanism
MLWE Module Learning with Errors
MPU Micro-Processor Unit
MSIS Module Short Integer Solution
NIST National Institute of Standards and Technology
NIZK Non-Interactive Zero-Knowledge proof
NSA National Security Agency
NSF Network Security Function
NSPR Netscape Portable Runtime
NSS Network Security Services
NTRU N-th degree Truncated polynomial Ring Units
OCSP On-line Certificate Status Protocol
OP-TEE Open Portable Trusted Execution Environment
OQS Open Quantum Safe
OS Operating System
PCB Printed Circuit Board
PCR Platform Configuration Register
PKC Public-Key Certificate
PKCS Public-Key Cryptography Standards
PKI Public-Key Infrastructure
PL Programmable Logic
PoKS Proof of Knowledge of a Signature
PQ/T Post-Quantum/Traditional
PQ Post-Quantum
PQC Post-Quantum Cryptography
PQTN Post-Quantum Telco Network
PRNG Pseudo Random Number Generator
PS Processing System
QKD Quantum Key Distribution
QoS Quality of Service
QUBIP Quantum-oriented Update to Browsers and Infrastructures for the Post-quantum transition
RA Remote Attestation
RAM Random Access Memory
RCA Root Certification Authority
ROM Read Only Memory
RoT Root of Trust
RSA Rivest–Shamir–Adleman
S/MIME Secure/Multipurpose Internet Mail Extensions
SA Security Association

SAD Security Association Database
SCP Secure Channel Protocol
SDN Software-Defined Networking
SE Secure Element
SIM Subscriber Identity Module
SIS Short Integer Solution
SLH-DSA Stateless Hash-Based Digital Signature Algorithm
SoC System-on-Chip
SotA State of the Art
SPD Security Policy Database
SSI Self-Sovereign Identity
SW Software
TC Trusted Computing
TCG Trusted Computing Group
TEE Trusted Execution Environment
TF-A Trusted Firmware-A
TF-M Trusted Firmware-M
TLS Transport Layer Security
ToT Triangle-of-Trust
TPM Trusted Platform Module
TTP Trusted Third Party
URI Uniform Resource Identifier
VC Verifiable Credential
VDR Verifiable Data Registry
VP Verifiable Presentation
VPN Virtual Private Network
W3C World Wide Web Consortium
WNS Weak Non-Separability
WP Work Package
XMSS eXtended Merkle Signature Scheme
ZK Zero-Knowledge

PUBLIC D1.4 Analysis and design of PQ building blocks

1. Introduction

The deliverable D1.4 “Analysis and design of PQ building blocks” is issued at M12 (i.e., August 2024). Its
scope is to describe the analysis performed and the suggested design for the building blocks of the project,
that are those later used in three pilot demonstrators.

In each section, a specific building block (often intended as a “class”) is introduced. Then it is analyzed
with respect to critical issues for PQ transition, so that proper requirements can be derived. This may also
involve considering current scientific, technical, and commercial trends for this kind of operation. Finally, a
possible design (that might be not the unique one) to satisfy these requirements is described.

Considering the EU’s commitment to stringent data protection and robust cybersecurity, the NIST selection
of Post-Quantum Cryptography (PQC) standards is just one part of the picture. European and national
agencies also offer their own sets of recommendations for the PQC transition, reflecting a diverse range of
strategies and priorities across Europe. This variety ensures that cryptographic security approaches are
tailored to different regional needs and perspectives on emerging quantum threats.

In this context, cryptographic agility is increasingly critical. Cryptographic agility refers to the ability of a
product or system to support updating its cryptographic algorithms without recalling it or replacing it with
a new one. Moreover, pliability represents another relevant characteristic of the transition. Pliability refers
to the need for the transition to adapt to network management best practices, support established network
services, and be integrated through standardized approaches.

These capabilities are essential to ensure that digital infrastructures remain secure and resilient against
both current and future threats, and even more relevant considering systems which may be deployed under
different regional recommendations. For example, Spain’s CCN has issued its own recommendations [4].
Similarly, Germany’s BSI and France’s ANSSI each regularly update their respective recommendations
on the PQC transition [5, 6, 7]. Both agencies are currently mostly aligned in their latest positions, but
exhibit some differences from the algorithm selection operated by NIST [8] and NSA [9], in the portfolio of
algorithms (e.g., FrodoKEM [10] and Classic McEliece [11] are featured in their Key Encapsulation Method
lists, but not in NIST’s current selection), in the parameter sets (e.g., the BSI indicated they might include
only parameter sets corresponding to NIST security levels 3 and 5 [7]), or about Post-Quantum/Traditional
(PQ/T) Hybrid considerations. For these reasons, agencies in Europe currently promote cryptographic
agility, in order to better protect digital sovereignty and the security of European citizens’ data.

Throughout this document, the keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL", are to be interpreted as
described in RFC-2119 [12].

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
12

PUBLIC D1.4 Analysis and design of PQ building blocks

2. Public-Key Infrastructure

2.1. Introduction

Public-Key Infrastructure (PKI) is at the heart of several modern security solutions, from digital signature
for electronic documents to peer authentication in secure network channels – such as IP Security (IPsec)
or Transport Layer Security (TLS) – from authentication of software updates to identity of devices. PKI
is a technical and management infrastructure for the creation, distribution, and validation of Public-Key
Certificates (PKCs). A PKC is a data structure that securely binds a public key with the identity and/or
attributes of the owner of the corresponding private key. The transition exercise is represented by the
integration of PQ digital signature algorithms in the current PKI and the evaluation of their impact in terms
of both performance and storage.

This chapter starts with an overview of the main components of PKI, namely Certification Authority (CA),
Certificate Revocation List (CRL) and On-line Certificate Status Protocol (OCSP) protocol. Afterward, the
requirements for PQ PKI are provided. However, in order to perform the PQ transition, it is important
to mention and follow the recommendations from official organizations. Finally, a design choice for PQ
certificates is presented.

CA

The CA is the entity which builds the trust basis for PKI by issuing and revoking PKCs. When implementing
a PKI, an organization can either deploy its own CA or rely on a Trusted Third Party (TTP).

A valid chain of trust is composed by three entity classes: (1) the Root Certification Authority (RCA),
whose certificate is self-signed with the RCA’s private key; (2) the Intermediate CAs, that extend trust to
End-entities; (3) End-entities, that provide critical information to the issuing CA via a Certificate Signing
Request (CSR) form. The certificate is then signed and issued by a trusted CA.

Certificate validation plays an essential role in PKI and it requires not only cryptographic validation of the
PKC itself and its trust chain, but also verification that each certificate in the chain was not revoked at the
time it was used to sign a certificate or a document.

CRL

A CRL is a signed data structure that contains a list of revoked certificates. A CRL can be requested once
to the corresponding CA and cached locally to be read without having access to Internet. The publication
of a CRL is done periodically, thus allowing to obtain the full revocation-related information at specific
points in time, even when the relying party is offline. However, this periodic public mechanism may have
some disadvantages:

• CRLs could become big and consulting them would be potentially time-consuming;

• a lot of storage might be needed to store CRLs, which is a problem in low-memory applications such
as mobile or Internet of Things (IoT) devices;

• the validity period and publications of CRL is in the order of days, and the information available may
be not up-to-date.

For this reason, OCSP protocol is used.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
13

PUBLIC D1.4 Analysis and design of PQ building blocks

OCSP

The OCSP protocol allows clients to query an OCSP server about the revocation status of individual certifi-
cates, providing more up-to-date information with respect to a CRL. OCSP does not require much storage,
but requires applications to be online. The OCSP server responds with a digitally signed message con-
taining the actual status of the certificate. In order to achieve more end-user privacy in Internet browsing,
OCSP-stapling can be included during the verification of the status of certificates.

2.2. Requirements

The transition of PKI to PQC involves specific requirements focused on accommodating PQ algorithms.
Standardization of these algorithms must align with their integration into existing protocols. Firstly, the
security infrastructure must accommodate PQ algorithms. This involves ensuring that the PKI can handle
the larger key sizes and signatures associated with these algorithms. RSA-2048 has a public key and
signature size of 256B, while ECC algorithm with the same security level has key size and signature size
of respectively 28B and 64B. PQ algorithms have much different parameters. For example, FALCON
1024 [13] has a public key size of 1793B and a signature size of 1280B. These parameters significantly
exceed those of traditional RSA or ECC keys, necessitating adjustments in storage, processing power,
and transmission efficiency. Secondly, the implementation should maintain compliance with performance
and speed requirements, especially in certificate generation and chain verification processes. These per-
formance metrics are critical for maintaining operational efficiency and user experience.

Additionally, as PQ algorithms may have different operational characteristics, it is essential to review and
update security policies and practices to address new potential vulnerabilities and attack vectors introduced
by the shift to PQC.

Finally, compliance with official guidelines is critical in the design and implementation of PQ PKI systems.

The main requirements for a PQ PKI are summarized in Table 2.1.

Table 2.1: PQ PKI Requirements

Req. Description

PKI-01 The Root CA, intermediate CAs and end-entities MUST ensure cryptographic agility

PKI-02 Public Key Algorithm field of PQ certificate MUST support PQ algorithms
identifiers

PKI-03 Public Key field of PQ certificate MUST NOT have size limits

PKI-04 Issuer Key MUST be strong and MUST NOT have size limits

PKI-05 Signature algorithm’s speed MUST be considered if certificates are generated on
the fly

PKI-06 Signature applied by the CA on the certificate MUST be strong and short

PKI-07 CRL’s Issuer Key MUST be strong

PKI-08 Signature verification speed SHOULD be comparable to classical signature algo-
rithms

It is important to outline a scale of priorities for both performance and storage requirements, since PQ
algorithms will inevitably introduce challenges from this point of view. Verification speed is more important
in end-entities (that sometimes has constrained resources), whilst signature generation speed is more

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
14

PUBLIC D1.4 Analysis and design of PQ building blocks

important for servers that sign certificates. In general, the following order SHOULD be considered to
choose PQ algorithms for PKI, with performance at least comparable with the classical algorithms:

1. Signature verification speed, which is crucial for end-entities that sometimes lack of powerful re-
sources and are in charge of verify the certificates. This aspect is also significant for OCSP protocol;

2. Signature generation speed, which is important for servers;

3. Key generation speed, which can be improved through Hardware Security Module (HSM).

On the other hand, the sizes of public keys, private keys and signatures MUST be considered because of
their influence on the total size of the certificate, with the following priorities:

1. Certificate size;

2. Public key size, which is crucial for Intermediate CAs since they are in charge of transferring certifi-
cate chains. Meanwhile, Root CAs can handle bigger public keys;

3. Private key size, which is important for systems with limited storage.

2.3. Current Trends

This section aims to outline the starting point for a design choice, based on official guidelines, recommen-
dations and existing implementations.

2.3.1. Recommendations

IETF

The IETF suggests that quantum-safe authentication is achieved through either a pure PQ or a PQ/T
hybrid Certificate [14]. A pure PQ X.509 Certificate should use Module-Lattice-Based Digital Signature
Algorithm (ML-DSA) with the most appropriate version based on the needed security level. In order to
decide which certificate to adopt, it is important to consider some factors. For example, for applications
with short key lifetimes it might be acceptable to still consider only classical algorithms, because a quantum
attack would take longer to run than the lifespan.

The IETF recommends that the first step could be to have a heterogeneous PKI where only long-lived CAs
are using PQ algorithms.

CA/Browser Forum

Even if the CA/Browser Forum did not provide yet recommendations about the PQ transition of PKI, it is
still worth mentioning the last ballot about reducing TLS server certificate lifetimes [15]. The consequences
of this change (which is going into enforcement during 2024) might influence the design decision for PQ
transition as well. These changes aim to manage the increasing number of machine identities, especially
in containerized and cloud-native environments.

The strong distinction between short-lived and long-lived certificates makes them subject to different re-
quirements. The lower lifetime is going to impact especially short-term certificates, while long-term will
not be much affected. Since short-lived certificates will have a lifecycle of 7 days in 2026, they will not be
associated to any revocation information. Therefore, the CA will no longer be in charge of revoking this
kind of certificates, and OCSP will become optional. On the other side, long-lived certificates will still be
associated to CRLs.

As a consequence, shorter certificate lifespans increase the frequency of certificate issuance and renewal
processes, necessitating efficient and scalable PQC algorithms that can handle larger key sizes and sig-
natures without compromising performance. Organizations will need to adopt automation tools and robust

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
15

PUBLIC D1.4 Analysis and design of PQ building blocks

infrastructure to manage the increased volume of certificates and ensure smooth integration of PQC into
their existing PKI systems.

BSI

The German BSI suggests that PQ algorithms standardization should happen in parallel with the integra-
tion of the new algorithms in the existing cryptographic protocols [16]. Moreover, PQ algorithms should be
used only in combination with classical ones, at least in the first phase of the transition, in order to ensure
compatibility.

About PKI, the BSI suggests to start with hybrid X.509v3 certificates with PQ keys and signatures marked
as non-critical extensions. However, if an application supports or is aware of the new extensions, only
the PQ part of the certificate should be verified, otherwise there would not be an actual improvement in
security. Finally, according to BSI, hash-based signature schemes, such as Leighton-Micali Hash-Based
Signature (LMS) [17] and eXtended Merkle Signature Scheme (XMSS) [18], are more suitable for long-
lived root certificates, as explained in [19].

Hash-based signature schemes have reduced key and signature size but are stateful, which means that
private keys must always be handled in a secure environment. Root CAs can provide such a secure
environment and the number of issued signatures is not high because many root CAs delegate OCSP
services or the signing of end-entity certificates to external entities that implement stateless signature
schemes. In this way, the security issues that might arise from the usage of stateless algorithms are
mitigated.

NSA

In the Commercial National Security Algorithm Suite 2.0 (CNSA 2.0) [20], different PQ algorithms are
chosen for different use cases:

1. Software and Firmware updates requires LMS [17] and XMSS [21] algorithms;

2. Symmetric encryption requires either SHA-384 or SHA-512 for integrity and AES-256 as encryp-
tion algorithm;

3. Asymmetric encryption should follow the standardization process conducted by NIST. The recom-
mended algorithms from the NSA are ML-DSA ad Module-Lattice-Based Key-Encapsulation Mech-
anism (ML-KEM).

GSMA

The GSMA Post-Quantum Telco Network (PQTN) Task Force has provided comprehensive best prac-
tice guidelines for transitioning to quantum-safe solutions [22]. Although there is no focus on PKI, these
guidelines include important implications for its deployment in telecommunications. The most relevant
recommendations for PQ PKI regard automation and standardization.

Automation is critical for adopting cryptographic agility and quantum-safe solutions at scale. It supports
various stages of the PQ transition, ensuring efficiency and consistency. Additionally, utilizing standardized
algorithms, protocols, and solutions facilitates migration and minimizes costs. Standardization ensures
broad compatibility and eases the integration of new cryptographic methods.

2.3.2. Existing Implementations

It is important to evaluate existing implementations in order to understand the current status of the tech-
nology. Moreover, existing implementation may be considered as starting point for further contributions.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
16

PUBLIC D1.4 Analysis and design of PQ building blocks

Several open-source implementations showcase the integration of PQ algorithms into PKI:

• GlobalSign Repository [23] contains examples of PQ certificates, CRLs, and OCSP requests and
responses.

• Open Quantum Safe (OQS) Project [24] allows the generation of PQ X.509 certificates using a
modified version of OpenSSL 1.1.1 or standard OpenSSL 3 with the OQS provider. The project
supports generating these certificates with the common OpenSSL ’x509’ commands.

• IETF Hackathon [25] provides a repository of X.509 data structures using PQ and composite algo-
rithms, combining classical and PQ cryptography.

These initiatives demonstrate practical steps towards integrating PQ algorithms into existing PKI frame-
works, ensuring long-term security against quantum computing threats.

2.4. Design

There are some external factors that create constraints in the design of the solution, therefore should be
considered. These factors can be summarized in:

1. Hardware readiness, namely the status of current hardware systems with respect to PQ transition;

2. Software readiness, namely being aware of the existing software that are currently taking steps
forward in terms of transition to PQC. Examples are Chrome 124 [26] and CloudFlare [27];

3. Certificate readiness in terms of full control of the certificates, which is an essential requirement for
a complete transition to PQC. This aspect should be considered in parallel with software readiness.

Certificate Agility

In general, the transition to PQ PKI should follow the principle of cryptographic agility [22, 28], shaped
in the form of certificate agility. The latter is the ability to replace certificates without errors and in the
smoothest way. One way to achieve certificate agility is to adopt automation solutions for automatic provi-
sion, deployment, and expiration actions.

Hybrid Certificates

Design considerations necessitate intermediate steps before transitioning to pure PQ certificates [29].
The initial phase involves deploying hybrid certificates [30], in order to have backward compatibility. These
certificates incorporate both classical and PQ cryptographic elements, with PQ keys, algorithms, and sig-
natures integrated into the Subject Alt Public Key Info, Alt Signature Algorithm, and
Alt Signature Value fields as non-critical extensions of the X.509v3 format, while classical algo-
rithms remain in the tbsCertificate element. In this way, the same certificate provides two or more
signatures and keys, which is a default feature of the X.509v3 format. It is important to note that, if an
application has PQC support to verify a hybrid certificate, only the PQ signature should be considered,
otherwise there would not be PQ transition at all. Hybrid cryptographic schemes can provide transitional
and fallback mechanisms. However, they may introduce computational and complexity overheads that
could be unsuitable for some contexts [22]. Therefore, when certificate size is a serious issue, the PQ
part of the certificate can be embedded in DeltaCertificateDescriptor extension, which allows
to encode the differences between two parallel certificates [31].

For security-critical applications, such as CA, the next step involves using composite certificates. The
latter use ASN.1 encoding to separate the traditional and PQ objects [32]. Ultimately, pure PQ certificates
can be implemented once the systems are fully upgraded to PQ algorithms [29]. Currently, conventions for
using the ML-DSA in Internet X.509 certificates and CRLs are described in [33].

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
17

PUBLIC D1.4 Analysis and design of PQ building blocks

Algorithms selection

Since in the QUBIP project PKI for Internet Browsing and IoT-based Digital Manufacturing use cases
are taken into account, different certificates are going to be implemented. Internet Browsing requires
X.509 “core” hybrid certificates with public CA, while private CAs and “specialized” certificates can be
implemented for IoT authentication. “Core” certificates must follow the migration paths provided by the
platform providers. On the other hand, “specialized” certificates are not supposed to follow a precise path,
thus being an easier PQ migration context. The PQ digital signature algorithms will be selected according
to the requirements expressed in Section 2.2:

• Root CAs MUST adopt an algorithm with at least security level 3, according to the NIST’s evaluation
criteria for security levels [34]. Based on the scales of priorities and the experimental evaluation in
Table B.1 in Appendix B, the most suitable choice is ML-DSA. Long-lived root certificates may also
adopt Stateless Hash-Based Digital Signature Algorithm (SLH-DSA);

• ML-DSA with security level 2 is suitable for intermediate CAs and end-entities.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
18

PUBLIC D1.4 Analysis and design of PQ building blocks

3. Integrity Verification

3.1. Introduction

In today’s digital landscape, ensuring the integrity and authenticity of computing systems is paramount, so
Integrity Verification techniques are crucial features of a secure computing environment. Integrity Verifica-
tion encompasses mechanisms such as secure boot, which prevents unauthorized code from executing
during startup, measured boot, which records the integrity state of each component before its execution
during the boot process, and runtime measurement, which ensures the system remains unaltered during
its operation.

Remote Attestation, on the other hand, allows a system to provide verifiable proof of its integrity status to a
remote entity, facilitating trust in distributed and cloud-based environments. Together, these mechanisms
form a robust defense against unauthorized modifications and intrusions. The necessity for these security
measures stems from the increasing sophistication of cyber threats. Attackers continuously devise new
methods to compromise systems by altering boot sequences, injecting malicious code during runtime, or
altering system configurations.

The advent of Cryptographically Relevant Quantum Computer (CRQC) poses a significant challenge to
validity of Integrity Verification mechanisms, which widely use cryptographic algorithms such as RSA and
ECC, threatened by the computational capabilities of quantum computers. As quantum technology ad-
vances, the urgency to transition to quantum-resistant cryptographic procedures becomes evident, espe-
cially with regard to the mechanisms that represent the basis of trust in modern digital infrastructures.

Migrating Integrity Verification techniques to quantum-safe approaches involves selecting cryptographic
algorithms that can withstand the capabilities of CRQCs, and integrating them in secure boot, measured
boot, runtime integrity, and remote attestation processes. This demands a comprehensive overhaul of
key management practices, cryptographic libraries, and protocol standards used into existing Integrity
Verification frameworks. The transition of Trusted Computing procedures against the imminent revolution
of quantum computing is a complex exercise that must be addressed urgently, since it is considered a
priority by the scientific community compared to other security techniques.

Regarding Integrity Verification, the QUBIP project aims to analyze the security requirements, performance
implications, and technical constraints related to deploying PQC solutions in these critical security services.
In the following, sections 3.2 and 3.3 will address the analysis of system requirements and design build-
ing blocks needed to carry out transition of Integrity Verification techniques to PQC on different device
categories: embedded systems, in the IoT-base Digital Manufacturing pilot demonstrator, and network
platforms, in the Software Network Environments for Telco Operators pilot demonstrator.

3.2. Requirements

PQ Integrity Verification needs specific technical, performance, and implementation requirements tailored
to different target platforms. Table 3.1 lists general requirements needed to enable PQ Integrity Verification
techniques across platforms.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
19

PUBLIC D1.4 Analysis and design of PQ building blocks

Table 3.1: PQ Integrity Verification Requirements

Req. Description

IV-01 PQ Integrity Verification MUST rely on PQ cryptographic primitives

IV-02 Each component involved in the boot sequence of the system MUST be signed by a
trusted authority with quantum-resistant digital signature algorithms

IV-03 PQ digital signature algorithms adopted for PQ Secure Boot MUST support rapid
signature verification; factors like signature size, key size, and computational com-
plexity of the signature verification operation MUST be considered

IV-04 PQ digital signature algorithms adopted for implementing remote attestation MUST
support rapid signature generation to ensure the shortest attestation cycles possible

IV-05 PQ digital signature algorithms adopted for implementing remote attestation
SHOULD support rapid key generation and signature verification.

IV-06 Platform components, encompassing firmware, operating system, and applications,
MUST adopt post-quantum secure hash functions for acquiring integrity measure-
ments on binaries and configuration settings that impact security

IV-07 PQ Integrity Verification MAY adopt hybrid cryptographic approaches that combine
classical and post-quantum algorithms, to allow seamless integration into existing
systems and protocols

IV-08 PQ Integrity Verification procedures SHOULD support crypto-agility, in order to allow
for easy updates as new PQ algorithms become available

IV-09 PQ Integrity Verification implementation SHALL comply with specifications and stan-
dards set by recognized standards bodies such as NIST, IETF, TCG, and with secu-
rity guidelines relevant to the target platform and deployment environment

3.3. Design

This section outlines the design of the components of the Integrity Verification building block necessary
for migrating Integrity Verification protocols to PQC. The aim is to ensure the long-term security of these
procedures against the potential threats introduced by quantum computing. In the following, high-level
design objectives are presented.

3.3.1. Secure Boot

Secure boot ensures that a device boots using only software that is trusted by the device manufacturer
and/or device owner.

Making the secure boot process quantum-safe requires first integrating PQC at the firmware level, in
order to ensure that the initial code executed during the boot process is authenticated using PQ signature
algorithms. There are some key factors that need to be considered when choosing the optimal digital
signature algorithm to use for PQ secure boot.

First, PQ digital signatures used for secure boot require a high security strength and algorithm maturity, as
they should remain valid for long periods of time. The security of Hash-Based Signature (HBS) schemes
relies solely on the properties of the underlying hash functions, which are well-studied and understood
in cryptography, providing a solid foundation for their security compared to newer approaches, such as

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
20

PUBLIC D1.4 Analysis and design of PQ building blocks

lattice-based ones [35]. This consideration leads to preferring HBS schemes in the implementation of PQ
secure boot. Moreover, when choosing PQ signature algorithms, it would be useful to prefer those that
are already part of the NIST PQC standardization process, or have been recommended by other reputable
standardization bodies (e.g., IETF). Among HBS schemes, NIST selected SLH-DSA for standardization,
while the IETF developed RFCs for two Stateful HBS schemes, LMS [17] and XMSS [21]. NIST has also
published a recommendation document [36] on the use of Stateful HBS schemes.

Secure boot also requires a careful evaluation of resource requirements and performance, as the PQ
signature algorithms have to be efficient in the signature verification operation in order to keep boot time
and system latency low. Regarding resource-constrained devices, like embedded systems used in the
IoT-based Digital Manufacturing pilot demonstrator, a careful evaluation of the memory consumption is
necessary in terms of the size of keys, signatures and any auxiliary data structures, as these devices
typically have limited memory and storage.

Furthermore, it is crucial to ensure that the integration of PQ algorithms does not introduce new vulner-
abilities in the secure boot process. Stateful HBS algorithms (LMS, XMSS) require secure and reliable
mechanisms for state storage and updates to ensure their security and correct operation, therefore their
adoption would add complexity. However, when these algorithms are used to implement secure boot, they
do not increase the implementation complexity in the device, as the management and updating of the
state have to be carried out by the entity that signs the software, external to the device. In contrast, State-
less HBS schemes (SLH-DSA) allow avoiding state management, but require efficient handling of larger
signatures, and often have slower verification performance as they require more complex operations.

Based on the previous considerations, Stateful HBS algorithms, like LMS and XMSS, represent an optimal
choice for secure boot use case, particularly for resource-constrained devices. XMSS shares similarities
with LMS and comes with a tighter security proof than LMS. Several studies have demonstrated its ap-
plicability in constrained devices [37, 38, 39]; however, based on [3, 40], it has worse performance than
LMS. For this reason, LMS is the algorithm selected as the first choice for implementing secure boot, as
recommended also by the CNSA 2.0 [20]. A performance comparison of HBS algorithms can be found in
Appendix D. On the other side, for measured boot and remote attestation, SLH-DSA is a better choice due
to its stateless nature.

3.3.2. Measured Boot

Measured boot allows to create and maintain a chain of trust from the moment the system is powered
on until the operating system is fully loaded. During the boot flow of the platform, each critical system
component (e.g., firmware, bootloaders, operating system kernel) is measured by the previous one, before
it gains control of the platform; the measurement is typically a cryptographic digest computed with a secure
hash function.

The measured boot chain of trust starts with a Core Root of Trust for Measurement (CRTM), which is
typically implemented with a secure, immutable component, contained in Read Only Memory (ROM). Due
to its immutable nature, the transition exercise will not affect the CRTM of the target devices.

Implementing a PQ measured boot requires adopting PQ secure hash functions to generate cryptographic
hashes of code and configurations. While quantum computers especially threaten classical asymmetric
cryptographic algorithms, their impact on hash functions is less severe, but still significant. The security
strength of a hash function against quantum attacks is primarily evaluated based on Grover’s algorithm
[41], which can speed up the brute-force search for pre-image attacks, effectively reducing the security
level of the hash function by half [42]. For collision resistance, quantum computers do not provide a
significant speedup over classical attacks; the best-known quantum attack does not significantly improve
over the classical birthday attack, which halves the security strength [43]. Thus, if SHA-256 is currently
considered to have acceptable security strength against classical attacks, SHA-512 or SHA-3-512 should

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
21

PUBLIC D1.4 Analysis and design of PQ building blocks

be adopted in PQ measured boot, in order not to lower the security strength of this process due to Grover’s
algorithm.

The measurements acquired during the boot stages have to be recorded in a secure storage, which usually
is the Trusted Platform Module (TPM). Depending on the target platform on which the PQ measured boot
will be integrated, the secure storage that will hold the measurements will be the TPM chip or an area
of main memory isolated from the rest of the system via a Trusted Execution Environment (TEE), within
which a firmware PQ-TPM can run. Then, the recorded quantum-safe measurements will be available to
be used in the PQ Remote Attestation protocol.

3.3.3. Remote Attestation

Remote Attestation (RA) is a protocol used to verify the integrity and trustworthiness of a remote computing
system. To enable it, the remote platform must provide mechanisms that allow a trusted party, often
referred to as the verifier, to assess the actual state of the remote system, typically called attester or
prover, in a way that is reliable even if the platform has been compromised.

RA is a challenge-response protocol in which the verifier sends a challenge (e.g., a nonce) to the attester,
which then generates and signs an attestation evidence containing the requested measurements, the
nonce, and other relevant data (e.g., timestamp, counters). The nonce is important in order to avoid replay
attacks, in which the attester sends the verifier a non-fresh attestation evidence, created before the system
is corrupted. In order to make the protocol resistant to replay attacks in a PQ scenario, the nonce has not
to be predicted or forged even with the capabilities of a CRQC. Thus, the verifier has to generate the nonce
by relying on a quantum-resistant Pseudo Random Number Generator (PRNG), based on hard problems
believed to be resistant to quantum attacks, and with a length of at least 256 bits, given that CRQCs could
potentially halve its security strength.

When the attesting system receives the attestation challenge from the verifier, it generates an attestation
evidence, or quote, which serves as proof that the device’s current state (including its firmware, software,
and configuration) is trustworthy and has not been tampered with. The key elements of a quote are
the measurements performed on the system components, the nonce received from the verifier and the
signature made on the measurement data and the nonce to ensure integrity and authenticity. Therefore,
in order to obtain a PQ quote, the measurement acquisition process must follow what is established in
Section 3.3.2; the nonce must be generated by the verifier according to the guidelines described above;
the signature must be done with a PQ digital signature algorithm. In order to enable runtime attestation of
a computational node, the Integrity Measurement Architecture (IMA) module, provided by the Linux kernel,
must be appropriately configured with a policy. To enable measurement of files accessed during system
runtime with PQ-resistant hash algorithms, the IMA module has to be configured to use these algorithms
(e.g., SHA-512, available starting from kernel version 3.13, SHA-3-512 available starting from version 6.7).
Additionally, to protect the integrity of the IMA Log file by relying on SHA-512 or SHA-3-512, a TPM must
be present on the system and it has to be configured with a Platform Configuration Register (PCR) bank
associated with SHA-512 or SHA-3-512.

In the case of PQ RA, the selected signature algorithm should be efficient in all its operations, especially
for signature generation and signature verification. The efficiency of these operations is crucial for quickly
detecting compromises and maintaining overall system performance: the faster the attestation process,
the shorter the window of opportunity for attackers to exploit a compromised system. Comparing the
performance of the PQ algorithms proposed by NIST for standardization, FALCON [13] represents an op-
timal choice for PQ RA, because it provides the highest efficiency in signature generation and verification.
ML-DSA [44] is also a suitable choice, having a good balance between key generation, signature genera-
tion, and signature verification efficiency, but is slightly slower than FALCON. Instead, if the maturity of the
signature algorithm represents a preponderant requirement with respect to the performance of the remote
attestation cycle, SLH-DSA is the algorithm to use. Since different evaluations can be made for RA based

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
22

PUBLIC D1.4 Analysis and design of PQ building blocks

on the use case, enabling algorithm agility for the attestation evidence signature algorithm is a desirable
feature.

Finally, in order to protect the privacy of integrity measurements in transit on the network and to ensure
that the attestation report is sent only to an authorized verifier, attester and verifier SHOULD establish a
PQ secure communication channel, e.g., using PQ TLS, with PQ key exchange.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
23

PUBLIC D1.4 Analysis and design of PQ building blocks

4. IoT devices

4.1. Introduction

Resource-constrained IoT devices in the framework of post-quantum demand compact, low-power, and
competitive solutions in terms of timing performance for the implementation of cryptographic functions.

Traditional hardware-assisted solutions based on TPMs are conceived for powerful processors included
in high-end devices with high cost. However, mostly of the TPMs specifications are not suitable for IoT
devices due to the limited resources of the platform. Furthermore, Hardware (HW) TPMs are not flexible,
making the adoption of new cryptographic functionality difficult.

Secure Elements (SEs) emerge as alternative of the TPMs for the IoT devices. The integration of a SE
in an IoT device enables robust hardware-based protection rather than just software security. The SE is
purpose-built for IoT and meets the requirements with an affordable increase of price, when comparing
with the unprotected version. Hardware SEs are widely used in various applications, such as Subscriber
Identity Modules (SIMs), Europay, Mastercard, and Visa (EMV) bank cards, and electronic passports [45].

Current commercial SEs provide TPM-like functions, such as secure key generation, cryptographic opera-
tions, and identity generation. They rely on conventional asymmetric cryptography using RSA and ECC.

This section addresses the analysis and design of the different components needed to integrate PQC into
IoT infrastructures. In particular, the transition exercise is focused on adopting a SE with PQ functionalities
to IoT devices to harden infrastructure security against future quantum attacks.

QUBIP considers two different IoT design flavors:

• Micro-Controller Unit (MCU)-based IoT device: the SE is external to the IoT platform, therefore,
a secure communication channel between MCU and the SE is established by means of a Secure
Channel Protocol (SCP). The MCU leverages the SE to harden TLS implemented in Mbed-TLS (see
Section 5.1).

• Micro-Processor Unit (MPU)-based IoT device: both the SE and MPU are implemented in a single
System-on-Chip (SoC). In this more powerful IoT device, the OpenSSL cryptographic library can
exploit HW implementations of PQ algorithms.

In addition, the SE can be used by the IoT device to perform cryptographic operations. The integration of
the SE with the IoT device increases trust in the IoT ecosystem with an additional layer of security.

4.1.1. MCU-based IoT Device

The MCU-based IoT device represents a highly constrained system within the IoT domain, functioning on
a microcontroller unit which operates within a bare-metal software environment or very reduced Operating
System (OS). The MCU-based device will be able to connect to the Internet by using the provided on-
board Ethernet port to reach a remote server that coordinates the action of multiple IoT devices with the
same purpose. Additionally, the MCU-based IoT device is connected to one or more sensors that sample
real-world data, and use the MCU to transfer the collected data to the remote server for analysis.

To improve the security of the embedded system, the MCU-based device establishes connectivity with a
SE on-boarded on the same Printed Circuit Board (PCB), through the Inter Integrated Circuit (I2C) protocol.
The MCU-based IoT device initiates calls to the SE to securely store or generate cryptographic material
and to leverage the HW implementation of cryptographic algorithms.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
24

PUBLIC D1.4 Analysis and design of PQ building blocks

Two contexts are involved in the transition to PQC. First, in the communication protocol between the MCU-
based device and the server, i.e., TLS 1.3 using PQ algorithms HW implementations in the SE. Second,
in the serial communication protocol between the MCU-based device and the SE. In both contexts, the
transition means a comprehensive adaptation to provide security against quantum attacks.

Internet communication will be based on TLS 1.3 [46]. We will be using the TLS implementation provided
by the Mbed-TLS library to implement the PQ/T hybrid connections to the remote server. In order to reduce
the load on the MCU-based device for supporting such a secure protocol, we will leverage the hardware
implementations of the cryptographic primitives provided by the SE. Finally, in order to ensure the privacy
and integrity of the sensitive data exchanged between the MCU and the SE, we will implement the SCP-
03 on the MCU-SE I2C bus. Being based on symmetric cryptography, we need to select the security
parameters compatible with the rest of the PQ-related design decisions.

4.1.2. MPU-based IoT Device

Embedded devices can come in various forms, depending on the needs of the application and its con-
straints, such as power consumption (e.g., battery-powered or energy harvesting devices), computational
power, input/output and interfacing capabilities, cost, and security.

The choice of a particular device that manipulates data is usually tailored to a specific application (or at
least a family of applications) or constraints. In some applications, MCUs are not the optimal solutions
due to their limitations in terms of computational power, at the cost of higher power consumption and more
expensive hardware. Therefore, when complex tasks must be performed and/or data manipulation requires
tighter timing requirements, the solution is to adopt MPU-based systems. MPUs-based IoT devices share
many things in common with MCU-based devices, but they are generally more advanced and complex.
From a processing viewpoint, MPUs-based devices are usually faster than MCU-based devices and are
generally capable of running a full-featured OS. The possibility to leverage an OS is not always feasible
on MCU-based IoT devices1 due to limited capabilities, but it enables MPU-based systems to perform
very complex tasks and to ease the development. In addition, MCUs’ memory is usually limited, and the
code’s size represents a huge limitation for writing complex applications. From a connection standpoint,
MPUs usually come with many peripherals that are similar to MCUs’, but they also have the possibility
to connect to high-speed communication peripherals, such as USB-3.0 and/or Gigabit Ethernet ports, as
their computational power and memory can support large amounts of data. Memory-wise, it is common
for MPUs-based systems to store their code outside the device itself, and external memory for storage and
Random Access Memory (RAM) is usually needed, which makes in general the Bill-Of-Materials (BOM)
more expensive with respect to an MCU-based system.

In advanced IoT scenarios, an MPU-based device establishes a TLS secure channel with a server to
exchange data collected from other IoT nodes and/or sensors. Moreover, the Software (SW) Integrity
Verification at boot and runtime is crucial and implemented by means of the Trusted Computing (TC)
techniques described in Chapter 3.

The transition to PQC involves the implementation PQ algorithms to support PQ/T TLS by means of HW
acceleration and PQ integrity verification. In addition, the transition of the integrity verification techniques
requires a PQ firmware Trusted Platform Module (fTPM) running into a TEE.

Securing TLS with PQC

Speeding-up the TLS communication between the IoT endpoint and a server is crucial, especially when
dealing with transition to PQC. The possibility to speed up PQ algorithms execution can be achieved by
ensuring that these “heavy” functions are all performed in hardware. In this case, the “heavy” functions

1Some MCUs are able to run some lightweight OSs and real-time OSs.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
25

PUBLIC D1.4 Analysis and design of PQ building blocks

are not performed by the Central Processing Unit (CPU) itself, but on a dedicated area of silicon that has
been specifically designed to perform such operations. Clearly, a possible solution could be to leverage on
off-chip SEs, as described in Section 4.1.1.

On the other hand, MPUs-based devices are commonly organized as a SoCs, where a powerful CPU
running a rich OS is coupled with on-chip hardware accelerators, aiming at off-loading the CPU itself from
heavy computational tasks. Typically, the on-chip communication between the CPU and the hardware
accelerators is made possible by means of standard interfaces such as Advanced eXtensible Interface
(AXI) and Advanced Peripheral Bus (APB). As PQ algorithms typically require a large number of complex
operations, it is possible to implement directly on-chip the logic to speed-up cryptographic tasks for PQ
and PQ/T hybrid algorithms by means of adopting the hardware acceleration strategy. The transition to
PQC strongly benefits from the large bandwidth provided by on-chip interfaces compared to the off-chip
SE solution.

The hardware approach is also followed by the adoption of a proper OpenSSL version with PQ and PQ/T
hybrid TLS protocols implementation. Hence, OpenSSL can exploit the benefit of hardware acceleration
through a set of custom drivers.

PQ Root of Trust for Integrity Verification

As stated in Chapter 3, the transition of TC procedures to PQC is paramount to ensure quantum-secure
integrity verification in embedded systems. A key-enabler technology to achieve TC is represented by the
Root of Trust (RoT), which is a component, either made in hardware or in software, that provides a firm
foundation to build security and trust in a system. A classical example of RoT is represented by TPMs, that
offer a secure enclave with physical and/or logical separation for storing sensitive materials and to perform
cryptographic operations.

Our transition exercise clearly requires a PQ RoT to provide quantum-secure TC. It has be to noted
that commercial hardware TPMs (usually a standalone device) do not support PQ functionalities yet, and
therefore they are not suitable to be a PQ RoT. In modern MPUs, it is possible to leverage on TEEs already
at CPU-level to provide TPM services. In such TEEs, the isolation required to provide TPM functionalities
is typically provided by the internal logic of the CPU and by the OS running on it. This strategy allows
the implementation of the needed TPM functionalities in firmware, de facto delivering the possibility to
implement a fTPM. The adoption of the fTPM is a suitable way to enable a quantum-secure integrity
verification for an MPU-based IoT device, allowing secure and measured boot as well as RA.

4.1.3. Secure Element

Current IoT systems establish trusted connections among their components. These systems require a
trust anchor, which is a secure location for storing essential secrets or performing secure computations. It
is widely recognized that it is inherently impossible to create such a trust anchor using only software. For
that reason, hardware SEs have been developed and are now increasingly prevalent [47].

The SEs play a crucial role in ensuring the security by implementing cryptographic algorithms linked with
symmetric or asymmetric keys. In addition, they offer a variety of key management mechanisms, includ-
ing secure storage and key generation. It is also essential that these elements are protected through a
combination of logical and physical security precautions [48].

The security requirements for SEs are dictated by the FIPS 140-3 standard [49], which replaces the pre-
vious FIPS 140-2 standard [50], also referred to as “Security Requirements for Cryptographic Modules”.
This standard establishes a range of escalating security levels from 1 to 4.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
26

PUBLIC D1.4 Analysis and design of PQ building blocks

4.2. Requirements

The requirements for each component of the IoT devices are detailed in Tables 4.1, 4.2, and 4.3. The
analysis distinguishes the requirements of the MCU-based IoT device (see Table 4.1), MPU-based IoT
device (see Table 4.2), and SE (see Table 4.3), including a short and concise description.

Table 4.1: MCU-based IoT device requirements

Req. Description

MCU-01 PQ/T hybrid TLS implementation MUST leverage PQ algorithms selected by NIST.
New algorithms can be considered as the NIST standardization process evolves

MCU-02 The PQ/T hybrid TLS implementation MUST use PQ algorithms that provide the best
trade-offs for efficiency, power consumption, memory occupancy and implementa-
tion area

MCU-03 The communication between the MCU and the SE MUST involve symmetric algo-
rithms for encryption and authentication which are resistant to quantum threats

Table 4.2: MPU-based IoT device requirements

Req. Description

MPU-01 The PQ/T hybrid key exchange mechanism MUST use PQ KEM algorithms selected
by the NIST. New PQ KEMs can be considered as the NIST standardization process
evolves

MPU-02 The PQ/T hybrid signature generation and verification mechanisms MUST use PQ
signature algorithms selected by NIST. New algorithms can be considered as the
NIST standardization process evolves

Table 4.3: SE requirements

Req. Description

SE-01 The key exchange mechanism implemented in the SE MUST support the use of
classical and PQ solutions. It MUST be compliant with the selected algorithms of the
MCU and MPU-based devices

SE-02 The SE MUST provide implementation of PQ/T hybrid signature algorithms. It MUST
be compliant with the selected algorithms of the MCU and MPU-based devices

SE-03 An Application Programming Interface (API) based on the standard PKCS#11 MUST
be provided to ease the manipulation of the SE

SE-04 The communication between the MCU-based device and the SE MUST be secured
through the use of a quantum-secure serial communication protocol

On the MPU board, integrity verification can be implemented through Secure Boot, Measured Boot and
Remote Attestation, following the requirements of Table 3.1. The transition to PQC exercise will be per-
formed by integrating PQ digital signature algorithms at firmware level during Secure Boot and strong hash
algorithms, resistant to quantum computers, during Measured Boot, as explained in Chapter 3.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
27

PUBLIC D1.4 Analysis and design of PQ building blocks

4.3. Design

After defining the requirements, the next step involves the design of these components. The device comes
in two variants, MCU-based and MPU-based, as shown in Figures 4.1a and 4.1b, respectively.

The MCU-based variant consists of two distinct parts: an STM-32 running Mbed-TLS and an SE linked to
the STM-32 via I2C interface and protocol. To guarantee secure communication between these compo-
nents, the SCP-03 protocol [51] is used. Our design makes use of larger challenge size, from 8 to 16 bits
(from S8 to S16 [51]) to avoid possible attacks based on Grover’s algorithm [41], due to the low entropy of
nonces. In addition, the TLS protocol in Mbed-TLS leverages the HW implementation of the PQ/T hybrid
algorithms provided by the SE.

The developing board selected for the implementation of the MCU-based IoT devices is the nucleo-144
STM32F4 [52]. It is one of the most widely used and deployed MCU-based IoT device on the market, of-
fering good computational capabilities and low power consumption. Furthermore, it comes with a series of
hardware accelerators on some models, and offers a wide range of peripherals. The Field Programmable
Gate Array (FPGA) chosen for the implementation of the SE is the Genesys-2 board [53], which features
a Kintex-7 FPGA (XC7K325T-2FFG900C). This FPGA, with its 478K LUTs, is capable of implementing all
the cryptographic primitives required by the SE and offering at the same time a beneficial balance between
cost and performance.

The MPU-based variant is developed on a SoC. In this setup, OpenSSL operates on an OS whose
Processing System (PS) is based on an ARM core, adhering to the requirements outlined in Tables 4.2.
The SE, which meets the requirements listed in Table 4.3, is implemented in the Programmable Logic (PL)
and connects to the ARM core via the AXI-Lite protocol [54]. The ARM core manages the connection to
the server using the PQ/T hybrid TLS implementation with assistance from the SE. The APB is utilized for
external connections to other devices or services. The development board chosen for the implementation
is the ZCU-104 [55]. This board features a Zynq UltraScale+ (XCZU7EV-2FFVC1156 MPSoC) with a
PS that is an ARM Cortex-A53 and a PL with over 500K logic cells. The choice was influenced by the
experience of the consortium with the Pynq platform, which can be implemented on this board, easing the
hardware integration as well as the resource requirements for the final design of the SE.

At firmware level, the First Stage Bootloader (FSBL) and the ARM Trusted Firmware (ATF) [56] compo-

(a) MCU-based design (b) MPU-based design

Figure 4.1: Two different design flavours of the IoT device.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
28

PUBLIC D1.4 Analysis and design of PQ building blocks

nents, involved in the booting process of the MPU, can be modified in order to have Secure Boot and
support PQ algorithms.

For measured boot and remote attestation, a fTPM with integration of PQ algorithms will be implemented
inside ARM TrustZone as a Trusted Application using the Open Portable Trusted Execution Environment
(OP-TEE) framework [57].

QUBIP is going to develop a single SE and use it in the two design variants. The choice of the algorithms
to be implemented in the SE plays a crucial role. In order to meet the requirements set by the different
components (i.e., TLS, SCP, Integrity Verification) running in the two IoT device flavors, and with the idea
of supporting a PQ/T hybrid approach where relevant, the SE provides the implementation of the following
algorithms:

• Hash: SHA-256, SHA-384, SHA-512, SHA-512/256, SHA3-256, SHA3-512, SHAKE-128, SHAKE-
256.

• Symmetric encryption: AES-128-ECB, AES-128-CBC, AES-128-GCM, AES-128-CMAC, AES-
256-ECB, AES-256-CBC, AES-256-GCM, AES-256-CMAC.

• KEM: X25519 (classical) and ML-KEM-512/764/1024 (PQC).

• Digital signature: EdDSA25519 (classical), ML-DSA-44/65/87 (PQC) and SLH-DSA-
SHA2/SHAKE-128/192/256-X (PQC) (not yet selected the ’s’ or ’f’ version).

• Key Deviation Function: HKDF-SHA256.

• Random Number/Bit Generators: TRNG and DRBG-AES/SHA2.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
29

PUBLIC D1.4 Analysis and design of PQ building blocks

5. Cryptographic Libraries

5.1. Introduction

Cryptographic libraries are essential tools in modern software development, providing a suite of algorithms
and schemes designed to secure data through encryption, decryption, hashing, and authentication. These
libraries offer developers a robust framework for implementing complex cryptographic functions without
requiring in-depth knowledge of the underlying mathematics. Some cryptographic libraries further provide
support for secure communication protocols, with varying degrees of abstraction and tuneable parameters.
Notable examples, such as OpenSSL, demonstrate the critical role of open-source cryptographic libraries
in ensuring secure communications and data integrity across diverse platforms.

In the rest of this chapter we provide a brief introduction to the building blocks involved in the “Cryptographic
libraries” layer of the multilayered approach of the QUBIP project for the transition to PQC. In particular,
we target OpenSSL, Network Security Services (NSS), and Mbed-TLS, to seamlessly provide support for
PQ primitives and schemes, and PQ/T Hybrid TLS, as detailed below.

After this introduction, Section 5.2 covers the requirements of the building blocks in this layer, while Sec-
tion 5.3 covers the matching design specifications.

OpenSSL

OpenSSL [58] is a a robust, commercial-grade, full-featured open-source toolkit for general-purpose cryp-
tography and secure communication. Originating in 1998, it serves as a crucial component in securing
communications over computer networks, enabling encrypted data transfer and authentication. It consists
of three main components, namely:

libcrypto a library offering access to cryptographic primitives and cross-platform abstractions;

libssl a library mainly implementing support for the TLS protocol;

built-in applications a collection of command-line utilities to create and manipulate various cryptographic
objects, and test supported communication protocols.

As an open-source project, OpenSSL benefits from a collaborative development model, allowing continu-
ous improvements and community-driven support. OpenSSL’s extensive range of cryptographic algorithms
and protocols makes it an essential tool for developers and organizations aiming to enhance the security of
their digital infrastructure. For all these reasons, OpenSSL is widely pervasive, especially on Linux-based
systems, forming a foundational element in a multitude of applications and services, with its codebase
comprising millions of lines of code.

As part of OpenSSL 3.0, the latest major release of the project, significant efforts have been devoted to de-
veloping a new software architecture. This architecture is characterized by the introduction of Providers,
which serve as containers for implementations of cryptographic operations [59]. This new architecture is
mainly aimed at enhancing cryptographic agility, ensuring that applications utilizing high-level APIs interact
seamlessly with the OpenSSL core layer. This core layer dynamically dispatches requests to the pre-
ferred Provider implementation at run-time. The Provider architecture’s extensibility allows users to
configure their systems or applications to load third-party Providers. These third-party Providers can
offer access to cryptographic schemes not yet available in the main OpenSSL distribution or provide im-
plementations that exploit the specific capabilities of the current system, integrating them into the network
protocol stack.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
30

PUBLIC D1.4 Analysis and design of PQ building blocks

In QUBIP we leverage the extensibility of the Provider architecture, to achieve a seamless transition to
PQC. We generate customized shallow Providers, configured to expose the choice of PQ schemes
designated by the developers, with their choice of underlying implementations, and integrate them in
PQ/T Hybrid [60] schemes for TLS 1.3 [46].

NSS

NSS [61] is a suite of libraries crafted to facilitate the development of security-enabled client and server
applications across various platforms, leveraging the Netscape Portable Runtime (NSPR) project [62], a
platform-neutral open-source API designed to facilitate cross-platform development. NSS provides support
for, among others, TLS 1.2 [63], TLS 1.3 [46], Secure/Multipurpose Internet Mail Extensions (S/MIME) [64],
X.509 v3 certificates, Public-Key Cryptography Standards (PKCS) #8 [65], PKCS #12 [66], and numerous
other security standards. While Mozilla hosts its source code repository and the issue tracker and infras-
tructure to support its development process, NSS is co-developed by various companies and individual
contributors, including Red Hat, Oracle, and Google. Albeit being integrated in many open-source client
and server solutions, in the context of the QUBIP project, we mostly focus on the use of NSS within the
Mozilla Firefox Internet browser.

NSS natively supports PKCS #11 [67], to access HW and SW implementations of cryptographic primitives.
Within QUBIP we aim to leverage the PKCS #11 support to implement shallow dynamically loadable mod-
ules, akin to the discussed QUBIP OpenSSL Providers, to allow developers and users to inject support
for PQC schemes in NSS, making them available to NSS-powered applications.

Mbed-TLS

Mbed-TLS [68], originally known as PolarSSL, was developed to provide an easy-to-use and high-
performance SSL/TLS library. ARM Holdings acquired PolarSSL in 2014 and rebranded it as Mbed-TLS,
integrating it into the Mbed platform to enhance IoT security. The library is currently maintained and devel-
oped by the Trusted Firmware Project [69]. Mbed-TLS is written in C language and implements essential
cryptographic primitives, which are the foundational algorithms and protocols for securing data. These
include symmetric key algorithms such as AES, hashing functions such as SHA-256, and asymmetric key
algorithms such as ECC.

In addition to these primitives, Mbed-TLS offers extensive support for X.509 certificate manipulation. The
library provides functionalities for parsing, creating, and verifying these certificates, enabling secure iden-
tity verification and data encryption.

Moreover, Mbed-TLS includes implementations of the TLS and Datagram Transport Layer Security (DTLS)
protocols. These protocols are designed to establish secure communication channels over the Internet.

Mbed-TLS has been specifically designed for providing cryptographic functionalities having a small code
footprint. This characteristic makes the library particularly well-suited for use in embedded systems, where
memory and storage resources are often limited. For example, Mbed-TLS is used extensively in Trusted
Firmware-A (TF-A) [70], Trusted Firmware-M (TF-M) [56], and OP-TEE [57].

5.2. Requirements

In this section, we collect the requirements for the building blocks of the cryptographic library layer. This is
arranged with a separate subsection for each of the building blocks.

Notice that among the listed requirements, we deliberately included some functional requirements that are
not directly related with the PQ transition exercise, but are more generic. We included such requirements

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
31

PUBLIC D1.4 Analysis and design of PQ building blocks

in this document only when we deemed it necessary, as those constraints either still informed PQ tran-
sition design decisions detailed here, or because they further impose requirements on the dependencies
selected as part of the specific demonstrators.

5.2.1. OpenSSL Providers: Requirements

Table 5.1: OpenSSL Providers requirements

Req. Description

OSSLProv-01 The integration between QUBIP Provider and OpenSSL MUST allow OpenSSL
(and applications above) to seamlessly select the correct primitives to handle new
abstract cryptographic objects (i.e., keys, certs, etc.)

OSSLProv-02 The integration between QUBIP Provider and OpenSSL SHOULD ensure that the
integration in applications above is as transparent as allowed by OpenSSL

OSSLProv-03 The QUBIP Provider MUST enable PQ/T Hybrid Key Encapsulation Method
(KEM) in TLS 1.3 handshakes

OSSLProv-04 The QUBIP Provider MUST enable PQ/T Hybrid Signatures in TLS 1.3 hand-
shakes

OSSLProv-05 Once standardized, the QUBIP Provider MUST provide full support for PQ/T Hy-
brid PKI (i.e., not only the handshake signatures, but PQ/T Hybrid certificate chains
up to the root of trust)

OSSLProv-06 The QUBIP Provider MUST enable full support for PQ/T Hybrid server-side au-
thentication in TLS 1.3

OSSLProv-07 The QUBIP Provider MUST enable full support for PQ/T Hybrid client-side au-
thentication in TLS 1.3

OSSLProv-08 The QUBIP Provider SHOULD expose a number of PQ/T Hybrid schemes, for
both key exchange and authentication in TLS 1.3, in different combinations at differ-
ent security levels

OSSLProv-09 The QUBIP Provider SHOULD expose the PQC and PQ/T Hybrid primitives for
all other uses of OpenSSL, not just enable PQ TLS 1.3

OSSLProv-10 The QUBIP Provider MUST be released under an open-source license compati-
ble with OpenSSL and with the licensing restrictions of external implementations

OSSLProv-11 The QUBIP Provider MUST NOT contain crypto implementations inside of it, but
rather link/incorporate implementations coming from external projects

OSSLProv-12 The QUBIP Provider SHOULD be implemented using State of the Art (SotA)
memory safety practices (e.g., Rust or other technologies with similar higher as-
surance on memory safety)

OSSLProv-13 The QUBIP Provider SHOULD be compiled as a dynamically loadable module

OSSLProv-14 The design SHALL allow to select external software projects as the back-end imple-
mentation of the shallow module low level primitives

OSSLProv-15 The main development and testing platform for the QUBIP Provider and the
OpenSSL integrations SHALL be Linux

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
32

PUBLIC D1.4 Analysis and design of PQ building blocks

OSSLProv-16 At build-time, the design SHOULD generate as much scaffolding as possible from a
declarative description of the algorithms, PQ/T Hybrids, and back-end implementa-
tions

OSSLProv-17 The QUBIP Provider SHOULD be functionally compatible with the
oqsprovider from the OQS project

OSSLProv-18 Already during development, the QUBIP Provider SHOULD strive to ensure inter-
operability with other PQ/T Hybrid TLS 1.3 stacks. The OQS project is the primary
interoperability target, but cross-testing with other stacks MAY be pursued

5.2.2. NSS: Requirements

Table 5.2: NSS requirements

Req. Description

NSS-01 The integration between QUBIP Module and NSS MUST allow NSS (and appli-
cations above) to seamlessly select the correct primitives to handle new abstract
cryptographic objects (i.e., keys, certs, etc.)

NSS-02 The integration between QUBIP Module and NSS SHOULD ensure that the inte-
gration in applications above is as transparent as allowed by NSS

NSS-03 The integration between QUBIP Module and NSS SHOULD allow NSS to dynami-
cally discover supported low level PQC primitives and PQ/T Hybrid from the loaded
QUBIP Module, and expose them for use at the protocol and the application layers

5.2.3. NSS Modules: Requirements

Table 5.3: NSS Modules requirements

Req. Description

NSSMod-01 The QUBIP Module MUST enable PQ/T Hybrid KEM in TLS 1.3 handshakes

NSSMod-02 The QUBIP Module MUST enable PQ/T Hybrid Signatures in TLS 1.3 handshakes

NSSMod-03 Once standardized, the QUBIP Module MUST provide full support for PQ/T Hybrid
PKI (i.e., not only the handshake signatures, but PQ/T Hybrid certificate chains up
to the root of trust)

NSSMod-04 The QUBIP Module MUST enable full support for PQ/T Hybrid server-side authen-
tication in TLS 1.3

NSSMod-05 The QUBIP Module MUST enable full support for PQ/T Hybrid client-side authenti-
cation in TLS 1.3

NSSMod-06 The QUBIP Module SHOULD expose a number of PQ/T Hybrid schemes, for both
key exchange and authentication in TLS 1.3, in different combinations at different
security levels

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
33

PUBLIC D1.4 Analysis and design of PQ building blocks

NSSMod-07 The QUBIP Module SHOULD expose the PQC and PQ/T Hybrid primitives for all
other uses of NSS, not just enable PQ TLS 1.3

NSSMod-08 The QUBIP Module MUST be released under an open-source license compatible
with NSS and with the licensing restrictions of external implementations

NSSMod-09 The QUBIP Module MUST NOT contain crypto implementations inside of it, but
rather link/incorporate implementations coming from external projects

NSSMod-10 The QUBIP Module SHOULD be implemented using SotA memory safety practices
(e.g., Rust or other technologies with similar higher assurance on memory safety)

NSSMod-11 The QUBIP Module SHOULD be compiled as a dynamically loadable module

NSSMod-12 The main development and testing platform for the QUBIP Module and the NSS
integrations SHALL be Linux

NSSMod-13 Already during development, the QUBIP Module SHOULD strive to ensure interop-
erability with other PQ/T Hybrid stacks. The OQS project is the primary interoper-
ability target, but cross-testing with other stacks MAY be pursued

5.2.4. Mbed-TLS: Requirements

Table 5.4: Mbed-TLS requirements

Req. Description

MbedTLS-01 The integration of PQC algorithm implementations in Mbed-TLS MUST allow Mbed-
TLS (and applications above) to seamlessly select the correct primitives to handle
new abstract cryptographic objects (i.e., keys, certificates, etc.)

MbedTLS-02 The integration of PQC algorithm implementations in Mbed-TLS SHOULD ensure
that the integration in applications above is as transparent as allowed by Mbed-TLS

MbedTLS-03 Mbed-TLS MUST ensure the ability to seamlessly select the classical primitives pro-
vided by the HW SE

MbedTLS-04 Once standardized, the Mbed-TLS MUST provide full support for PQ/T Hybrid PKI
(i.e., not only the handshake signatures, but PQ/T Hybrid certificate chains up to the
root of trust)

5.3. Design

Based on the requirements listed in the previous section, here we describe our design in terms of specifi-
cations and rationale.

5.3.1. OpenSSL Providers: Design

We developed a design out of the requirements listed in Table 5.1. The design adopts the OpenSSL
Provider API [59] for the integration of the QUBIP Provider and OpenSSL. The Provider API is
the recommended mechanism in the latest OpenSSL releases to perform this kind of seamless integration.
Modern applications built on OpenSSL usually delegate the selection of the correct primitives to handle the
new abstract cryptographic objects to the OpenSSL core, which can be influenced via a configuration file

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
34

PUBLIC D1.4 Analysis and design of PQ building blocks

or Command Line Interface (CLI), without further changes to existing applications. The Provider API
natively supports building Providers as dynamically loadable modules: by limiting our design to use
exclusively features supported by the Provider API, we can thus be compliant with both OSSLProv-01
and OSSLProv-13 requirements.

Integration with OpenSSL’s High-level APIs. Applications rigorously using only the high level APIs
offered by OpenSSL, i.e., EVP API and libssl functions, will seamlessly benefit from the integration
through the Provider API, achieving compliance with OSSLProv-02. Applications that have not fully
completed the migration to OpenSSL 3.0 and those that still use deprecated APIs, cannot be fully reached
by the new OpenSSL core architecture and the Provider API: to fully achieve OSSLProv-02 our de-
signs requires relevant applications to be following OpenSSL 3.0 recommendations.

Support for KEM and Signature Operations. The Provider API natively provides support for
generic KEM as well as generic Signature operations, and, as of OpenSSL 3.2 a capabilities mech-
anism to inject support for both operations in the TLS 1.3 stack of libssl [71]. Our design leverages
this feature of the Provider API to achieve OSSLProv-03 and OSSLProv-04, using combiners to expose
generated PQ/T Hybrid schemes for both operations.

Integration of PQ/T Hybrid Signature Into PKI. Similarly, the new OpenSSL core architecture and
the Provider API, allow for arbitrary pluggable Signature operations into the PKI stack of the library.
Our design leverages this feature of the Provider API for compliance with OSSLProv-05. We will con-
tinue to closely monitor the ongoing discussions about the standardization of PQ/T Hybrid schemes for
Signatures (e.g., see [30]) to ensure the QUBIP Provider will support suitable combiners.

Cryptographic Agility and Evolving Standards. On a related note, our design relies on continuous
monitoring of standardization activities around combiners for all relevant PQ/T Hybrid schemes, to ensure
suitable schemes for both key exchange and authentication can be implemented in TLS 1.3, with the
required combinations and at different security levels as required by the use cases in accordance with
standardization actions. We are confident that the degree of cryptographic agility offered by the new
OpenSSL core architecture will allow us to conform to OSSLProv-08, and we plan to assist the upstream
development of OpenSSL to pursue the changes that might be needed to fully support PQ/T Hybrid PKI.

TLS 1.3 Authentication. The design of the QUBIP Provider leverages the Provider API to provide
PQ/T Hybrid authentication support in TLS 1.3 both on server- and client-side, addressing OSSLProv-
06 and OSSLProv-07. This feature is already supported upstream since OpenSSL 3.2, but as noted
before, further patches upstream might be required by the advance of standardization of PQ/T Hybrid
Signature.

Access to PQC Primitives. The design of the QUBIP Provider not only enables PQ TLS 1.3 but
also exposes PQC primitives and PQ/T Hybrid schemes for all other uses of OpenSSL. This is achieved
leveraging the already supported features of the Provider API, in compliance with OSSLProv-09. Our
design involves comprehensive integration and compatibility testing using OpenSSL APIs.

Shallow Module Methodology. Our design for the QUBIP Provider is based on our shallow mod-
ule methodology, i.e., it does not include cryptographic implementations inside of it, but rather links (or
otherwise incorporates) PQ implementations from external projects, fulfilling OSSLProv-11. This is fully

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
35

PUBLIC D1.4 Analysis and design of PQ building blocks

supported by the Provider API, and our design will further facilitate the integration of external PQ imple-
mentation projects, as long as the back-end implementations expose an API compatible with the API [72]
published by National Institute of Standards and Technology (NIST) as part of the PQC standardization
process [8].

Licensing. The QUBIP Provider will be released under the same license as OpenSSL, i.e., Apache
License v2 [73]. To fulfill OSSLProv-10, each use-case selection criteria for the back-end implementations
of PQ primitives, which are provided via external projects, MUST include considerations on licensing terms
and ensure license compatibility with Apache License v2 [73].

Compatibility with External Primitive Implementations. Furthermore, the above design decisions in-
form the design to fulfill OSSLProv-14. In particular, the partners selecting back-end external implementa-
tions to be integrated with the QUBIP Provider, must ensure that the selected projects

1. conform to the official NIST PQC API notes [72];

2. are released under licensing terms that ensure compatibility with Apache License v2 [73].

Our design involves comprehensive integration and compatibility testing against the implementations col-
lected by the OQS project, to ensure that the selected back-ends are functionally correct, which partially
addresses OSSLProv-18.

Functional Compatibility target. The overall design also includes functional compatibility testing
against the oqsprovider, in fulfillment of OSSLProv-17. This in practice means that applications tested
using the oqsprovider should expect to function identically using our QUBIP Provider. Implicitly
this also ensures that, at the protocol level, our design will continuously ensure interoperability with other
selected PQ/T Hybrid stacks and other protocol implementations, fulfilling OSSLProv-18. We plan to cover
at least the same interoperability targets selected by the maintainers of oqsprovider, and possibly add
additional ones as needed for the specific use-case demonstrators.

Secure Coding Practices. The design of the QUBIP Provider will use SotA memory safety practices,
using Rust, in fulfillment of OSSLProv-12. By adopting best Rust practices, we will leverage its memory-
and thread-safety assurances, lowering the risks of introducing security critical bugs. We note that the
OpenSSL Provider API mandates a C Application Binary Interface (ABI), which although supported by
Rust requires the use of C Foreign Function Interface (FFI) bindings, which in general require unsafe
code blocks. Within such blocks many of the higher assurances of the Rust language are not guaranteed
by the Rust tool chain, and in our design we plan to implement idiomatic Rust best practices, isolating
unsafe blocks in the smallest possible units, to aid thorough manual assessment. The unsafe FFI
bindings will be further encapsulated within convenience Rust functions and methods, which will offer an
idiomatic way to interfacing with the FFI bindings after ensuring the required conditions for safe use.

Scaffolding Nature of the Design. Our design further leverages the capabilities of the Rust language
also to generate as much scaffolding as possible from a declarative description of the algorithms, hybrids,
and back-end implementations. This will be achieved primarily through idiomatic Rust features, such
as Macros [74, Chapter 19.5 “Macros”], automating code generation processes based on predefined
templates and configurations to avoid repetitive work and hopefully bugs, in fulfillment of OSSLProv-16.

Designated Development Platform. Finally, we will focus on Linux as the main development and test-
ing platform for the QUBIP Provider, in accordance with OSSLProv-15. In particular, we selected

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
36

PUBLIC D1.4 Analysis and design of PQ building blocks

Fedora Linux as the primary testing platform, based on the fact that this will be done in collaboration with
Red Hat, which is targeting Fedora Linux in their tasks. We note that, although support for other platforms
such as MacOS and MS Windows (as long as they are supported by the selected back-end projects) is
desirable, it is considered a non-requirement for the scope of the QUBIP Provider. Nonetheless, while
we won’t guarantee portability to other platforms, our design strives to pursue best practices in terms of
portability, to facilitate future porting efforts.

5.3.2. NSS: Design

The NSS PQC transition will be facilitated through the use of loadable modules. Loadable modules in our
design refer to dynamically loadable shared libraries that extend the capabilities of NSS without requiring
a recompilation of the NSS library itself. PKCS #11, also known as the Cryptographic Token Interface
Standard, defines a platform-independent API to manage and use cryptographic tokens [67]. NSS uses
the PKCS #11 to interface with cryptographic hardware and software tokens. By adhering to the PKCS #11
standard, NSS can dynamically load and utilize cryptographic modules, making it possible to seamlessly
integrate new cryptographic algorithms and functionalities. Modifications to the NSS source code are
intended to be minimal. These changes primarily involve configurations to enable NSS to recognize the
module and TLS 1.3 to recognize the PQC functionality within the protocol. This approach ensures that
our design remains easily maintainable.

Integration of the QUBIP Module and NSS. Our design meets the requirements in the Table 5.2 by
ensuring the seamless integration between the QUBIP Module and NSS. The QUBIP Module imple-
mentation of Cryptoki API and NSS’s native support for PKCS #11 will allow for seamless integration
between NSS and the QUBIP Module. This integration enables the correct selection of primitives and
handling of new cryptographic objects, ensuring compliance with NSS-01.

Cryptographic Agility. To achieve compliance with NSS-02, our design targets the seamless integration
of applications within the constraints posed by NSS. We plan to extend the current capabilities of NSS, to
further the cryptographic agility of the interface between NSS and applications built on top of it. Thus, our
design also anticipates future integration needs that may overcome the current constraints.

Discovery of Primitives. To achieve NSS-03, the design will proceed in several iterations. Initially, due to
constraints in NSS, we will hardcode the discovery of supported low-level PQC and PQ/T Hybrid primitives,
and the related TLS 1.3 codepoints. This approach will pave the way for the project’s targeted phase: the
dynamic discovery of low-level primitives for use at the protocol and application layers, similar to what is
currently achievable in Section 5.3.1 via the Provider API.

5.3.3. NSS Modules: Design

The QUBIP Module is the primary method for integrating PQC functionality into Mozilla Firefox through
NSS. Its core design principle is its shallow nature, meaning the module avoids nested or deeply layered
components. This design makes the module easy to understand, maintain, and integrate. By adopting this
approach, we can produce a QUBIP Module with high cryptographic agility, serving as a framework that
allows other researchers to test their cryptographic components in a web browsing setting with minimal
effort.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
37

PUBLIC D1.4 Analysis and design of PQ building blocks

Components. The design of the QUBIP Module leverages NSS’s native support for PKCS #11 [67],
enabling us to structure the QUBIP Module with the following components:

1. Cryptoki API,

2. a software interoperability layer,

3. back-end cryptographic implementations.

Cryptoki API. The Cryptoki API, specified by the PKCS #11 standard, provides applications with a
common logical view of a device capable of performing cryptographic functions, known as a cryptographic
token. The PKCS #11 standard defines the data types and functions available to applications requiring
cryptographic services using header files in the ANSI C programming language. Consequently, an appli-
cation only needs to use the functions specified in the PKCS #11 standard to access the cryptographic
functionality provided by the cryptographic token. From the NSS’s perspective, a cryptographic token is
the QUBIP Module that acts as a software token, providing PQC functionality. Additionally, the design
includes a software interoperability layer that connects the Cryptoki API and the back-end implemen-
tation into a functional entity. This ensures seamless integration and interaction between the API and the
back-end implementation.

Support for KEM and Signature Operations. The QUBIP Module will support PQ/T Hybrid KEM
and Signature operations, integrated with the TLS 1.3 stack of NSS, thus fulfilling NSSMod-01 and
NSSMod-02. The current NSS architecture is limited in its support for arbitrary pluggable Signature
operations within the PKI stack of NSS. Therefore, fully addressing NSSMod-03 requires advancing to
the final iteration of the design addressing NSS-03. As mentioned in Section 5.3.2, in the initial design
iteration we will hardcode the discovery of low level primitives offered by the QUBIP Module; our design
aims to later enhance the dynamic discoverability of the QUBIP Module capabilities, within the constraints
of the Cryptoki API. We are also closely following the ongoing discussions on the standardization of
PQ/T Hybrid schemes for Signature (e.g., see [30]) to ensure the QUBIP Module will support suitable
combiners.

TLS 1.3 Authentication. The design of the QUBIP Module leverages the Cryptoki API to provide
PQ/T Hybrid authentication support in TLS 1.3 for both server-side and client-side, addressing NSSMod-
04 and NSSMod-05.

Cryptographic Agility and Evolving Standards. Similar to how Section 5.3.1 addresses OSSLProv-08,
we are monitoring the standardization around combiners for all relevant PQ/T Hybrid schemes to ensure
suitable key exchange and authentication in TLS 1.3. With the cryptographic agility and flexibility our
approach offers, we are confident that we can conform to NSSMod-06.

Licensing. The QUBIP Module exposes its implementation of the Cryptoki API, as well as the PQC
primitives and PQ/T Hybrid schemes for all other uses of NSS, thus complying with NSSMod-07. NSS is
released under the Mozilla Public License Version 2.0 [75]. We will release our QUBIP Module under the
same license, adhering to NSSMod-08.

Shallow Module Methodology. The design for the QUBIP Module is based on our shallow module
methodology. i.e., it does not include cryptographic implementations inside of it, but rather links (or oth-
erwise incorporates) PQ implementations from external projects, fulfilling NSSMod-09. Similarly to the

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
38

PUBLIC D1.4 Analysis and design of PQ building blocks

design decision for OSSLProv-10, we advise that, to fulfill NSSMod-08, each use-case selection crite-
ria for the back-end implementations of PQ primitives, which are provided via external projects, MUST
include considerations on licensing terms and ensure license compatibility with Mozilla Public License
Version 2.0 [75].

Secure Coding Practices. The QUBIP Module will be developed in the Rust programming language.
This approach aligns with Mozilla’s Oxidation project [76], which strongly advocates for using Rust for new
components in Mozilla Firefox. Rust is preferred due to its memory- and thread-safety, high performance,
and expressiveness. Following this principle, we are also adhering to NSSMod-10. We note that the use
of the Cryptoki API mandates the use of C FFI bindings, which generally require unsafe code blocks,
as mentioned in Section 5.3.1 for OSSLProv-12. Our design will isolate these unsafe blocks into the
smallest possible units and encapsulate them within convenient Rust functions and methods.

Designated Development Platform. Our design aligns with NSSMod-11 by compiling the QUBIP Mod-
ule as a dynamically loadable module. We will focus on Linux, specifically Fedora Linux, as the primary
development and testing platform for the QUBIP Module, in accordance with NSSMod-12. This focus
is important because end-users of the Quantum-secure Internet browsing pilot demonstrator of WP2 will
interact with Mozilla Firefox (and indirectly the QUBIP Module) in a Fedora Linux-based environment.
Therefore, ensuring compatibility and smooth operation on Fedora Linux is a high priority. While support
for other platforms, such as MacOS and MS Windows (provided they are supported by the selected back-
end projects), is desirable, it is a non-requirement for the scope of the QUBIP Module design. However,
although we cannot guarantee portability to other platforms, our design strives to follow best practices in
terms of portability to facilitate future porting efforts.

Interoperability Testing. Finally, our interoperability testing involves evaluating our QUBIP Module de-
sign at the TLS 1.3 protocol level against the OpenSSL and the QUBIP Provider stack. Due to the de-
sign matching OSSLProv-18 of Section 5.3.1, our QUBIP Module will indirectly ensure ongoing interoper-
ability with other selected PQ/T Hybrid stacks and protocol implementations, thereby fulfilling NSSMod-13.

5.3.4. Mbed-TLS: Design

Mbed-TLS is built with a highly modular architecture, which means that each component is designed as a
separate module. This modularity allows developers to include only the components they need, reducing
the memory footprint and increasing efficiency. The list of modules includes, among others, the crypto-
graphic algorithms module and the platform abstraction layer. The former provides implementations of
various cryptographic algorithms used in SSL/TLS and other security protocols, while the latter abstracts
platform-specific features, enabling Mbed-TLS to be portable across different systems. As described here-
after, these modules will be used to address the requirements set in Table 5.4.

One of the strengths of Mbed-TLS is its configurability. Through a single configuration file (config.h),
users can enable or disable features and modules. This configurability allows developers to tailor the
library to specific needs, removing unnecessary features to save space, and optimizing the final build
for performance or memory usage based on the target application. We will implement the necessary
configuration options in the config.h file, in order to support the transition to PQC.

For Mbed-TLS, it has been decided to define a specific framework and design, and reduce the implementa-
tion only to the necessary building blocks. This is different from OpenSSL, which is intentionally designed
to maximizing cryptographic agility to dynamically choose primitives and modules (see Section 5.3.1).

The cryptographic algorithms module handles today’s classical cryptographic suites. We will modify this
module with new APIs, which provides the PQC algorithm implementations. This design choice allows

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
39

PUBLIC D1.4 Analysis and design of PQ building blocks

seamless selection of classical and/or PQ algorithms from the Mbed-TLS configuration file (see require-
ment MbedTLS-01).

In order to make the integration of PQC as transparent as possible (see requirement MbedTLS-02), we will
expose the cryptographic API primitives to higher level applications following the guidelines for Mbed-TLS
interfaces and APIs that support extension and customization.

In addition, we will implement a new abstraction layer that will be used by the Mbed-TLS alternate functions
to take full advantage of the cryptographic primitives implemented by the HW SE, so that it will be possible
to easily select these primitives from the configuration files (see requirement MbedTLS-03).

The Mbed-TLS implementation will expose X25519 and EdDSA-25519 for classical cryptography, while
it will expose ML-KEM and ML-DSA for PQC. The same functionalities will be provided by both versions,
with or without SE.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
40

PUBLIC D1.4 Analysis and design of PQ building blocks

6. Operating System

6.1. Introduction

This chapter of the document differs from the others as it describes the existing OS workflow and require-
ments for the component integration. The OS workflow and the requirements are not a subject to change
during the development. This chapter doesn’t create any PQ-related requirements by itself.

OSs provide an embracing self-consistent environment for various components to work in an interoperable
manner. At the start moment of the project, there were no OSs providing a full or near-full application
stack usable for the PQ transition. To ensure the PQ transition, it is necessary to add new components
and adjust the existing components to make them PQ-capable. Red Hat as a QUBIP partner has chosen
Fedora Linux [77] as the OS that the PQ-capable components will be added to.

The OS provides mechanisms to install and configure the PQ-capable components, both included in the
distribution itself and 3rd-party components. As a rule, these components are not developed by the OS
developers but are chosen according to the distribution rules and maintained afterward. All components
must be in a similar form as the other components of the OS for better user experience of PQ algorithms.

We address the lack of necessary software components and their integration to make PQ/T hybrid TLS
v1.3 available in the OS. This means integrating the pluggable modules as described in Section 5.3 into
the stack to make them available to user application to establish quantum-secure communication channels
by either extending the plug-in mechanisms or hard-coding the necessary abilities to get the algorithms
usable in the TLS. We intend to provide the necessary modifications to the corresponding upstream to
ensure the solutions will be suitable for wide usage and reduce the maintenance burden. Until the full
standardization process is finalized, the implementations both included in the distribution and 3rd-party
have some experimental status.

6.2. Requirements

The scope of the work involves extending the capabilities of the crypto libraries of low-level components to
provide PQ algorithms. The applications relying on these crypto libraries (OpenSSL, NSS) will be suitable
to use the PQ algorithms via standard interfaces to the extent it is implemented by their maintainers, e.g.,
OpenSSL-based web-server nginx and OpenSSL-dependent command line TLS client tool curl accept
the configuration options for specifying key exchange algorithms and can use OpenSSL providers basing
on system-wide configurations (OpenSSL system-wide configuration and crypto-policies, see below).

Fedora Linux MUST have a capability to install and configure the components providing PQ and/or hybrid
algorithms and use them from applications for establishing PQ-protected TLS connections.

There are several possible options for installing the necessary components:

1. Parts of the distribution. Components may be added to Fedora Linux according to the standard
procedure, published as a part of the standard OS repository, and installed in a regular way.

2. 3rd-party repository maintained by partners. These repositories may be added to a particular instal-
lation as a part of the process of system configuration and the components provided this way may
be installed in a regular way after that.

3. Flatpak format packages [78]. They can also be available via dedicated repositories configured
separately. This format may be preferable for Graphical User Interface (GUI) applications. Also,

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
41

PUBLIC D1.4 Analysis and design of PQ building blocks

applications distributed in such a format may have modified versions of system libraries available
only for such applications.

The components MUST be compatible with the declared version of the Fedora Linux.

As Fedora Linux implements system-wide “crypto policies” providing consistent setup for all the applica-
tions using standard backends (OpenSSL and NSS), separate crypto policy/policies enabling PQ and/or
hybrid algorithms MUST be implemented. Components provided as a part of distribution MUST be com-
patible with the crypto policy/policies mentioned before. Components provided via 3rd-party repositories
SHOULD be compatible with the crypto policy/policies mentioned before (e.g., providing algorithm names
matching the ones enumerated in policies). Components provided via Flatpak repositories MAY be com-
patible with the crypto policy/policies mentioned before. The components we consider the outcome of work
SHOULD be interoperable. By using the term “interoperable” we mean that there MUST be a subset of PQ
and/or hybrid algorithms that, being configured on both sides, give us a possibility to establish connection.

6.3. Design

We ship the following components as a publicly available part of Fedora Linux distribution:

• liboqs – a library providing a low-level implementation of the PQ/Hybrid algorithms. The Fedora
Linux build of liboqs includes the algorithms standardized by NIST [79]. Other algorithms may be
added to the component despite lack of formal approval, in case when they are widespread enough
for compatibility testing.

• oqsprovider – an OpenSSL provider based on liboqs making OpenSSL and OpenSSL-based ap-
plications (nginx, apache, curl) suitable to work with the PQ algorithms.

liboqs was chosen to be included in the Fedora after investigation of the possibilities. It is written in
C language, follows best development practices, provides a wide list of the algorithms, has a suitable
license, and a very responsive upstream. The combination of these circumstances make liboqs the best
one both for QUBIP purposes and for possible future use in Fedora. Also, liboqs uses the same low-
level implementation of the PQ algorithms that is, according to the best of our knowledge, planned to be
included into NSS.

oqsprovider is based on liboqs, it is implemented by the same team, and the tests using oqsprovider are
run as a part of OpenSSL integration tests.

The level of matching the standards is the one provided by the version of liboqs available in the distribution.
Usually the latest version of the liboqs and the oqsprovider is available in Fedora Rawhide [80] i.e., a
development version.

Having these components as a part of the distribution makes Fedora Linux a good foundation for other
PQC research projects.

We plan to make available the pluggable components described in Chapter 5 via a 3rd-party repository.

In case the version of NSS or Mozilla Firefox will result to be incompatible with the system-level one, we
plan to distribute the PQ-capable build of Mozilla Firefox web browser in a Flatpak format.

To simplify the setup of PQ-capable installation, we plan to prepare container images that have all the
necessary components in addition to crypto policies being configured to the fullest extent possible within
feasibility. These images will have a relevant documentation describing the configurations steps that should
be performed manually, if necessary, to finalize the configuration and run the relevant test scenarios.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
42

PUBLIC D1.4 Analysis and design of PQ building blocks

7. Firefox Browser

7.1. Introduction

Mozilla Firefox [81] is a widely-used, open-source web browser developed by the Mozilla Foundation. Ini-
tially released in 2002, Mozilla Firefox has grown to become one of the most popular browsers globally,
renowned for its emphasis on privacy, security, and user-centric features. It supports a diverse range of
web standards and technologies, providing users with a fast, secure, and customizable browsing experi-
ence. Mozilla Firefox’s commitment to open-source principles allows it to benefit from a vibrant community
of developers and contributors, continually enhancing its functionality and performance. Furthermore,
Mozilla Firefox also integrates a robust extension ecosystem, and many other advanced features, making
it a versatile choice for both casual and power users.

The cryptographic stack of Mozilla Firefox is based on NSS [61], but their current integration offers a
lower degree of cryptographic agility, compared to the related OpenSSL Provider solution (described
in Section 5.3.1). In QUBIP we plan to explore these limits, designing and implementing patches to over-
come them, in coordination with the Mozilla Firefox maintainers, to ensure our changes meet the project
requirements and can be contributed upstream.

7.2. Requirements

We collect the requirements for the PQ transition of Mozilla Firefox in Table 7.1. These requirements
provide a framework for the planned implementation, which is detailed in Section 7.3.

Table 7.1: Firefox browser requirements

Req. Description

MZFF-01 QUBIP’s Mozilla Firefox build MUST be able to leverage the QUBIP Module
(through the NSS layer) for PQ/T Hybrid KEMs in TLS 1.3 handshakes

MZFF-02 QUBIP’s Mozilla Firefox build MUST be able to leverage the QUBIP Module
(through the NSS layer) for PQ/T Hybrid Signatures in TLS 1.3 handshakes

MZFF-03 QUBIP’s Mozilla Firefox build MUST be able to leverage the QUBIP Module
(through the NSS layer) to inspect, evaluate, validate, and verify certificates for
PQ/T Hybrid PKI

MZFF-04 QUBIP’s Mozilla Firefox build SHOULD be able to leverage NSS to dynamically dis-
cover the algorithms supported by the loaded QUBIP Module, to expose them for
use at the protocol and application layers

7.3. Design

QUBIP’s Mozilla Firefox build will facilitate the transition to PQC through NSS. From a high-level perspec-
tive, we aim to modify the source code of Mozilla Firefox as little as possible. Instead of making extensive
modifications, we are designing loadable modules for NSS that leverage its native support for PKCS #11.
The PKCS #11 standard defines an API known as Cryptoki [67], which provides a standard interface for

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
43

PUBLIC D1.4 Analysis and design of PQ building blocks

managing and using cryptographic tokens. In our design, the module acts as a software token, utilizing an
external cryptographic library to provide PQC capabilities and exposing our implementation of the Cryp-
toki API for NSS to use. Our design aims to create a framework for integrating external cryptographic
libraries, making it easy for developers to test different PQC implementations.

Additionally, using loadable modules offers several advantages, such as simplicity in design, ease of main-
tenance, and greater flexibility for future updates and enhancements. For a more in-depth perspective on
NSS refer to Section 5.3.2, and for the loadable modules, refer to Section 5.3.3.

Our design ensures that QUBIP’s Mozilla Firefox build can leverage the QUBIP Module through the NSS
layer to achieve the requirements in the Table 7.1.

For MZFF-01 and MZFF-02, the design integrates PQ/T Hybrid KEM and PQ/T Hybrid Signatures into
TLS 1.3 handshakes by utilizing the QUBIP Module’s capabilities via NSS.

For MZFF-03, our build will be able to inspect, evaluate, validate, and verify certificates for PQ/T Hybrid
PKI, ensuring robust and secure certificate management. We will ensure that our build will be able to
handle such certificates programmatically, but changes for comprehensive GUI support for PKI facing end-
users are not planned within the scope of QUBIP. The above limitation is necessary as we anticipate that
additional requirements regarding the user experience for interacting with hybrid PKI may arise very late
during the QUBIP timeline, as discussions around PQ/T Hybrid certificates evolve.

Lastly, for MZFF-04, our design leverages NSS to dynamically discover the algorithms supported by the
loaded QUBIP Module, exposing them for use at the protocol and application layers, thus providing flexi-
bility and extensibility for future cryptographic advancements.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
44

PUBLIC D1.4 Analysis and design of PQ building blocks

8. Self-Sovereign Identity

8.1. Introduction

The Self-Sovereign Identity (SSI) reference model [82] consists of three layers, depicted in Figure 8.1.
Each layer contributes to the generation of the identity and defines the basic principles for trustworthy
interactions between peers.

Figure 8.1: The Self-Sovereign Identity reference model.

Layer 1 is implemented by means of any Verifiable Data Registry (VDR) that is used to store the public
identity data. The Decentralized IDentifier (DID) [83] is a new type of globally unique identifier designed to
verify a peer. The DID is a Uniform Resource Identifier (URI) in the form

did:method_name:method_specific_id

where method-name is the name of the DID method used to interact with the VDR and
method-specific-id is the pointer to the DID document stored in the VDR. Thus, a DID associates
a peer with a DID document [83] to enable trusted interactions with it.

Appendix A shows an example of a DID document containing the DID and two verification methods (i.e.,
public keys) for authentication purpose.

The DID method [83, 84] is a software implementation used by a peer to interact with the VDR of choice.
Following World Wide Web Consortium (W3C) recommendation [83], a DID method provides the so-called
CRUD functionalities to

• Create a DID: generates an identity key pair (sk, pk), the corresponding DID document containing
the public key pk, and stores the DID document in the VDR at the method-specific-id pointed
to by the DID,

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
45

PUBLIC D1.4 Analysis and design of PQ building blocks

• Resolve a DID: retrieves the DID document from the method-specific-id on the VDR pointed
to by the DID,

• Update a DID: updates the content of the DID document, e.g., generates a new key pair (sk′, pk′),
and stores the modified DID document to the same or a new method-specific-id if the node
needs to change the DID, and

• Deactivate a DID: provides an evidence in the VDR that the DID has been revoked by the owner.

The DID method implementation is VDR-specific and makes the upper layers independent of the VDR of
choice. The DID methods [85, 86] using VDRs implemented by a Distributed Ledger Technology (DLT)
leverage the immutability features of the DLTs that acts as the RoT for DID documents. However, the
VDR can also be implemented by a web domain. The did:web method [87] leverages a web domain
for the RoT of DID documents; with this option, it is up to the implementer to secure the integrity of DID
documents according to best practices. Another option exists with did:key method [88], in this case the
method-specific-id components of the DID coincides with the encoded public key, hence the VDR
is not required.

As shown in Figure 8.1, Layer 2 uses DIDs and DID documents to establish a cryptographic trust between
two peers. In principle, both peers prove the ownership of their private key sk bound to the public key pk
in their DID document.

While Layer 2 uses DIDs to start authentication, Layer 3 completes it and also deals with authorization to
services/resources using Verifiable Credentials (VCs) [89]. A VC is an unforgeable digital credential that
contains additional characteristics of the digital identity of a peer than its key pair (sk, pk) and DID. A VC
contains the metadata to describe properties of the credential (e.g., context, id, type, issuer, issuance,
and expiration dates), most importantly, the DID and the claim(s) about the identity of the peer in the
credentialSubject field, and the information for a Verifier of the VC to check the status of revocation
in the credentialStatus field. The addition of a proof, with the digital signature made the Issuer of
the VC, makes it tamper-evident and trustworthy. Appendix A shows an example of VC.

The combination of identity key pairs (sk, pk), DID, and VCs shapes the digital identity of a peer in the SSI
ecosystem.

Layer 3 works in accordance with the Triangle-of-Trust (ToT) depicted in Figure. 8.1. Three different roles
coexist:

• Issuer(s) asserts claims about a peer, creates a VC from these claims, and issues the VC to the
Holder. In addition, the Issuer manages VC revocation [89] and provides evidences for Verifiers to
check the revocation status [90] of all issued VCs without compromising the privacy of the Holders.

• Holder owns one or more VCs and generates a Verifiable Presentation (VP) [89] to authenticate with
a Verifier and request services/resources. A VP is constructed as an envelope of the VC issued by
an Issuer, where the proof contains the Holder’s signature. Appendix A shows an example of VP.

• Verifier receives a VP from the Holder and verifies the authenticity by checking the signature made
by the Issuer on the VC and by the Holder on the VP, checks the revocation status of the VC and
the claim(s) and metadata before granting or rejecting access to the Holder. The Verifiers have an
implicit trust on the Issuer(s).

It must be noted that a credential system based on plaintext VCs does not protect the privacy of the
Holder because the VC, the contained claims, and the signature of the Issuer are exchanged in plain
text. In this sense, a plaintext VCs result in linkability and traceability of peers. The anonymous VCs
represent a privacy-preserving alternative, that enables the Holder to manage its VC by choosing the level
of information disclosure. In detail, the roles in the Triangle-of-Trust are modified as follows:

• Issuer(s) asserts the capability of a Holder to prove its identity, possibly based on the knowledge of
some secret attributes. After proper verification, the Issuer issues the anonymous VC to the Holder,
and manages the VC revocation without compromising the privacy of the Holder.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
46

PUBLIC D1.4 Analysis and design of PQ building blocks

• Holder owns one or more anonymous VCs and can take advantage of Zero-Knowledge (ZK) primi-
tives and protocols to interact with Issuer(s) and Verifier(s) in a privacy-preserving way. This means
that the Holder can obtain a VC and prove that its identity satisfies certain properties, still maintaining
the desired level of privacy. In fact, these operations can happen in a completely anonymous way
(i.e., without revealing any identity details) or by selectively disclosing only a subset of the claims
contained in the VC (i.e., without revealing some specific secret attributes). Moreover, the Holder
can prove to the Verifier that its VC is legit, that means it contains a valid signature generated by an
Issuer using a Proof of Knowledge of a Signature (PoKS) [91].

• Verifier receives a PoKS from the Holder and verifies that the Holder actually holds a valid VC,
containing the undisclosed secrets and a valid signature from an Issuer.

In general, the SSI reference framework involves peer-to-peer interactions, but it is also intended to be used
in the client-server architecture typical of the Web. In this scenario, the SSI is a promising decentralized
alternative for implementing client authentication. The client establishes a secure communication channel
with the server using TLS [46] with server authentication only. Then, assuming the client already has its
self-sovereign identity, it creates a VP, signs, and sends it to the server for authentication. Upon successful
authentication, the server will also check the client’s VC claim(s) for authorization before granting access
to the requested service/resource.

QUBIP takes a practical step towards the transition of the SSI ecosystem by designing and implementing
transition to PQC of plaintext VCs with a solely PQ and PQ/T hybrid approaches, and of PQ anonymous
VCs with selective disclosure capabilities. The transition exercise will target the IOTA Identity library [92].
This is a widely used SSI library written in the Rust programming language and is the result of a large
open source, community-led SSI project maintained by the IOTA Foundation. The library provides all the
functionalities to handle W3C compliant DIDs, DID documents, VCs, and VPs. In essence, it is a general
purpose SSI library and, therefore, the perfect target for a practical transition to PQC of the SSI ecosystem.

8.2. Requirements

8.2.1. Plaintext Verifiable Credentials

CRQCs threaten traditional cryptography mainly through the Shor’s algorithm [93], for factoring integers
and solving discrete logarithms, and Grover’s search [41], which can help speed-up unstructured search
problems. The main cryptographic technologies in SSI with plaintext VCs are traditional asymmetric sig-
natures to authenticate identity. As a result, SSI is vulnerable to Shor’s algorithm, to stripping attacks in
case of a PQ/T hybrid VC, but not to the store-now-decrypt-later attacks.

Therefore, the transition to PQC of the SSI ecosystem, with plaintext VCs, means switching from traditional
to PQ or PQ/T hybrid key pair generation, signature generation, and verification. Switching means select
and adopt appropriate PQ signature algorithms to be used by the Issuer and Holder to sign the VC and
VP respectively, and by the Verifier to verify these signatures for authentication purposes.

In the target Web scenario, a Holder will request access to a Verifier with a frequency that is higher than
the frequency with which they request the issuance of a plaintext VC from the Issuer. We considered this
assumption to define the requirements for the transition.

The list of requirements is reported in Table 8.1.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
47

PUBLIC D1.4 Analysis and design of PQ building blocks

Table 8.1: Requirements for SSI with plaintext VC

Req. Description

SSI-PLAIN-01 The signature verification time MUST be as short as possible to increase the number
of Holders a Verifier can authenticate in a unit of time

SSI-PLAIN-02 The signature generation time MUST be as short as possible to (i) increase the
number of VCs an Issuer can issue in a unit of time, and to (ii) decrease the time a
Holder spends preparing the VP

SSI-PLAIN-03 The signature size SHOULD be as small as possible to reduce the overall size of the
VC and VP

SSI-PLAIN-04 The public key size SHOULD be as small as possible to reduce the size of the DID
document

SSI-PLAIN-05 Transition MUST provide a solution solely based on PQC, and OPTIONAL a PQ/T
hybrid alternative

8.2.2. Anonymous Verifiable Credentials

Anonymous credentials schemes based on traditional cryptography, such as CL [91] or BBS+ [94], are not
suitable in the light of the development of a CRQC.

Moreover, while for plaintext VCs the transition to PQC amounts to a proper migration from traditional
to PQ or PQ/T hybrid key-pair generation, signature generation, and verification (see Section 8.2.1), for
anonymous VCs, the situation is much more involved.

To understand this, it is crucial to recognize that anonymous VCs require proving knowledge of a signature
on some (potentially secret) attributes. In an anonymous credential system, the user receives a signature
on their attributes and a secret key at issuance. To show their credentials, they reveal the requested
attributes and prove knowledge of the signature, hidden attributes, and secret key to remain anonymous.

At the core of this mechanism is a PoKS, which consists of a “signature scheme with efficient protocols”
(informally, a digital signature scheme with specific features such as the ability to sign committed hidden
messages and to prove knowledge of a signature on such messages) and an associated ZK proof system,
as described (in the classic setting) by Camenisch and Lysyanskaya [94].

While there are many practical proposals for PQ ZK proof systems, the state of PQ “signature schemes
with efficient protocols” is still at the frontier of research. First, anonymous credential schemes based on
PQC have been proposed only recently (not before 2022) [95, 96, 97, 98], with the exception of [99], which
is however impractical due to having a signature size of at least 670 MB [95, p. 4]. Second, the literature
on PQ anonymous credential schemes is quite scarce, essentially only the aforementioned papers. Third,
none of the papers introducing these schemes is accompanied by a software implementation, nor does
any of them take into account implementation issues such as side-channel attacks.

For these reasons, in order to identify a suitable candidate scheme for PQ anonymous VCs and carry out
a software implementation, which will be the first of its kind, we focused mainly on three aspects (i) the
cryptographic assumptions on which the schemes base their security, (ii) the signature size, and (iii) the
completeness and clarity of the pseudocode presented in the papers proposing the schemes.

Regarding the cryptographic assumptions, we focused our attention on those used by the schemes se-
lected for standardization by the NIST at the end of the third round. In particular, they have chosen four
algorithms: one KEM, KYBER [100], whose security is based on lattices, and three digital signatures,
Dilithium [101], Falcon [13] and SPHINCS+ [35], whose assumptions are based again on lattices and
cryptographic hash functions. We examined different articles from the recent literature and we found three

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
48

PUBLIC D1.4 Analysis and design of PQ building blocks

valid candidates [95, 96, 97], all based on lattice assumptions. Here, we report their main characteristics:

1. In the paper [95], the authors present a lattice-based framework for anonymous credentials, improv-
ing the previous post-quantum state-of-the-art [99]. The size of a proof is around 640 KB.

2. In the paper [96], the authors improve the previous work [95] with the aid of a new cryptographic prim-
itive, called Commit-Transferable Signatures (CTS) to realize this paradigm more efficiently. They
obtain a proof with dimension around 500 KB.

3. The papers [97, 98] from Bootle, Lyubashevsky, Nguyen, and Sorniotti (BLNS) take a different ap-
proach from the previous two proposals, and their scheme exhibits shorter credentials, with a size
of around 125 KB. The security of the scheme is based on a new assumption, which is a variation
of classic lattice problems. From now on, we will refer to this proposal as the BLNS framework, for
conciseness.

The three proposals share important ideas in common, for example:

• all three schemes use a Non-Interactive Zero-Knowledge proof (NIZK) derived from the NIZK pro-
posed in [102];

• all three scheme utilize the Ajtai commitment, introduced in [103];

• to realize a framework for anonymous credentials, both [95] and [96] exploit the ‘signature with
efficient protocol paradigm’ introduced in the seminal work of Camenisch and Lysyanskaya [91];

• both [96] and [97] use the same sampling trapdoor algorithm described in [104]; in particular, the
sampler is taken from [105].

On the other way around, one of the biggest distinctions between [97] and [95, 96] concerns the crypto-
graphic assumptions. While all three of them are based on the Learning with Errors (LWE) and the Short
Integer Solution (SIS) assumptions, perhaps the two most studied lattice assumptions, the BLNS frame-
work [97] also uses the newly introduced family of assumptions Inhomogeneous SISf (ISISf), parametrized
by a function f , that allow to demonstrate significantly fewer and simpler relations.
The assumption on which the BLNS framework [97] relies on, ISISf , is a very natural generalization of
the underlying problem upon classic lattice-based signature schemes such as [104], and it is also simi-
lar to other recently, and independently, proposed lattice assumptions [106]. Furthermore, under specific
choices of f , the new assumption is proven to be equivalent to SIS, a well-known assumption introduced
by Ajtai in 1996 [103], on which many constructions base their security, like the standardized signature
Dilithium [101] relying on the variant SelfTargetMSIS.

8.2.3. Revocation Mechanism for Anonymous Verifiable Credentials

One of the most important functionalities that an anonymous credential system must possess is the re-
vocation. An efficient revocation mechanism represents a crucial requirement in any credential system,
independently of any privacy-enhancing features it offers (e.g., anonymity or selective disclosure). The
possible reasons why a credential needs to be revoked can be grouped in three categories:

1. Natural expiration – it is the most common case, where the credential reaches its expiration date,
thus becoming outdated and unusable.

2. Issuer-initiated revocation – the Issuer revokes the credential before its expiration date, because for
some reason the Holder has lost its permission to use the credential (e.g., a driving license revoked
because of speeding).

3. Holder-initiated revocation – the Holder asks for a revocation of its credential, for instance in the case
of credential theft or because its secret key has been compromised.

While the W3C standard approach to revocation [90] can also be adopted with PQC-based plaintext VCs,
essentially because it does not rely on cryptography vulnerable to CRQC, the same approach is not suit-
able for privacy-sensitive contexts.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
49

PUBLIC D1.4 Analysis and design of PQ building blocks

Two main approaches suitable to implement an efficient revocation mechanism for anonymous VCs exist:

1. Accumulator approach: Camenisch and Lysyanskaya in [107] propose the use of a dynamic ac-
cumulator to solve the revocation problem. The cost of an update for a dynamic accumulator, and
for the related witnesses, is linear in the number of users added to or revoked from the system; the
update of the witness must be done by the Holder. The latter is a defect, especially if the revoca-
tion operation is common and involves many Holders. In [108], Camenisch, Kohlweiss and Soriente
modify the dynamic accumulator introduced in [107], such that there is almost no cost for the Holder
or the Verifier, and the computation done by the Issuer is limited. In this case, the update operation
does not require the use of any secret key, hence this operation may be performed by any untrusted
entity. Both the solutions in [107] and [108] are based on pre-quantum assumptions.

2. Timestamp approach: Camenisch, Kohlweiss and Soriente in [109] had yet another idea to im-
plement a revocation mechanism, based on timestamps. Each credential is valid only for a time
interval called epoch, and a new credential must be issued for every epoch. The revocation consists
in non-issuing the credential for the next epoch. Even if this approach seems less efficient, in [109]
a non-interactive solution is proposed, where the Issuer publishes an updating material that the
Holders can retrieve to update their credential with no additional interaction with the Issuer. In this
case, the credential contains a signature of the Issuer on a number of attributes, some of them cho-
sen by the Issuer. Credential revocation is implemented by encoding a validity time property (i.e.,
a timestamp) into one of the Issuer-controlled attributes. Thus, an Issuer can periodically update
valid credentials off-line and publish a small per-credential update value, for instance on a public
bulletin-board. For the Issuer, this process consists in:

a) the update of the validity time property for each non-revoked credential;

b) the re-computation of a small portion of the Issuer signature on the updated credential;

c) the publication of such small signature update in a set of updates for all the non-revoked cre-
dentials, identified with unique serial numbers or, preferably, by means of pseudonyms.

A Holder can later download the update and refresh its credential to prove possession of a valid
credential for the current time period.

8.3. Design

8.3.1. Plaintext Verifiable Credentials

8.3.1.1. PQ approach

Table B.1 in Appendix B shows various statistics that we have experimentally measured on
liboqs-rust, a Rust wrapper for the liboqs C library [110], to make the proper selection of the
PQ signature algorithms.

In view of the postponement of FN-DSA (i.e., FALCON [13]) standardization announced by NIST, we have
decided to exclude it from the selection at this early stage of QUBIP in order to prioritize the PQ signature
algorithms, which are closer to final standardization, thus ensuring both current security requirements and
timely implementation of the project.

The combined analysis of the requirements1 presented in Table 8.1, and of the experimental evaluation
of NIST selected PQ signature algorithms, presented in Table B.1, suggests the use of ML-DSA [44], in
particular, ML-DSA-44 for NIST security level 2, the use of ML-DSA-65 for level 3, and the use of ML-DSA-
87 for level 5.

1We analyzed the requirements in order of priority from SSI-PLAIN-01 (higher priority) to SSI-PLAIN-04 (lower priority).

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
50

PUBLIC D1.4 Analysis and design of PQ building blocks

8.3.1.2. PQ/T hybrid approach

Although the PQ algorithms selected by the NIST have undergone rigorous reviews in recent years, they
are not as much mature as the traditional algorithms. This fact has led us to consider hybrid schemes
that combine both PQ and traditional signature algorithms in a single cryptographic scheme [30]. The
underlying idea is that the hybrid scheme is secure as long as the security of one of the algorithms holds.

In SSI the goal of hybrid signature schemes is hybrid authentication, which is the property that authenti-
cation is achieved by the hybrid signature scheme provided that at least one signature algorithm remains
secure. In other words, an adversary must violate both schemes to forge a credential and impersonate
another user’s identity. This way, if the PQ cryptographic assumption is found to be flawed in the future, the
composition of the signature algorithms ensures that the scheme is as secure as the traditional signature
algorithm.

There are several ways to combine algorithms to build a hybrid scheme [111]. Here, we design a hybrid
scheme that combines PQ and traditional signatures using the concatenation combiner and achieving the
Weak Non-Separability (WNS) property, customizing the design principles addressed in [32] to the SSI
model. The Non-Separability property defined for hybrid signatures in [112] prevents an adversary from
removing the signature generated by the secure algorithms, forcing the Verifier to rely only on the signature
generated by the broken algorithm. This is commonly referred to as stripping attack. Among the different
flavors, the WNS property implies that an adversary cannot remove one of the signatures without the
Verifier noticing.

WNS is achieved through the adoption of an artifact. It is the evidence of the will of Issuers and Holders
to hybridize their signatures on VC and VP, respectively. Given the SSI working principles introduced in
Section 8.1, our design places the artifact at the protocol level and, specifically, within the DID document.

Here, we define the CompositeSignaturePublicKey type of verification method, a novel type for
hybrid authentication purpose. It is designed to store a compositePublicKey object containing (i) the
PQ and traditional public keys JSON Web Key (JWK) encoded, and (ii) the algID string representing the
name of the algorithms used to generate the hybrid signature.

"id": "did:method_name:method_specific_id",
"authentication": [{

"id": "did:method_name:method_spec_id#keys-1",
"controller": "did:method_name:method_spec_id",
// the new type in the verification method
"type": "CompositeSignaturePublicKey",
"compositePublicKey": {

"algID": "id-MLDSA44-Ed25519-SHA512",
"pqPublicKey": {

// contain a JsonWebKey
"kty": "ML-DSA",
"alg": "ML-DSA-44",
"kid": ".. key thumbprint ..",
"pub": ".. encoded public key .."

},
"traditionalPublicKey": {

// contain a JsonWebKey
"crv": "Ed25519",
"x": ".. x coordinate ..",
"kty": "OKP",
"kid": ".. key thumbprint .."

}
}]

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
51

PUBLIC D1.4 Analysis and design of PQ building blocks

The algID in the above example of DID document represents the composition of ML-DSA-44 and
Ed25519 signature algorithms, see Table 3 in [32] for details on the string values.

Let us define m the message to be signed as the serialization of the VC or VP, Apq the PQ signature
algorithm, At the traditional signature algorithm, and (skpq, pkpq) and (skt, pkt) the PQ and traditional key
pairs, respectively. The PQ/T hybrid signature σh = (σpq, σt) is the concatenation of the PQ signature σpq
and the traditional signature σt, calculated as it follows:

m′ = Hash(m)

σpq ← Sign(skpq, Apq, DER(OID)||m′)

σt ← Sign(skt, At, DER(OID)||m′)

where the Object IDentifier (OID) associated to AlgID is DER encoded, see Table 1 in [32].

Considering a stripping attack scenario where an adversary has compromised one of the two signature
algorithms enough to forge the corresponding signature on the credential, the countermeasure relies on
the Verifier only trusting the hybrid public key (pkpq, pkt) and not the individual components. A Verifier
resolving a DID to a DID document with a compositePublicKey must check the whole hybrid signature
as it follows:

m′ = Hash(m)

Verify(pkpq, DER(OID)||m′, σpq, Apq)

Verify(pkt, DER(OID)||m′, σt, At)

where the OID is selected based on the algID retrieved from the DID document.

The requirements and principles for the selection of the PQ signature algorithms previously discussed
also apply in the case of a PQ/T hybrid approach to the transition. In addition, the authors of [32] provide
guidelines to compose signature algorithms based on their bit-level security and to select the appropriate
pre-hash to be applied to the message m.

All this information together suggests the adoption of two hybrid schemes using of ML-DSA and Ed25519:
in particular, the schemes with algID equal to id-MLDSA44-Ed25519-SHA512 and id-MLDSA65-
Ed25519-SHA512. The former composes ML-DSA-44 with Ed25519, while the latter composes ML-DSA-
65 again with Ed25519. In both cases, the authors of [32] suggests using SHA512 as the pre-hash for
consistency with Ed25519’s internal use of this digest algorithm.

8.3.2. Anonymous Verifiable Credentials

In order to select the best framework for our needs, we have identified and carefully examined three
papers [95, 96, 97]. In light of the considerations previously provided in Section 8.2.2, we chose the BLNS
framework [97] as the best option. Indeed, despite the three analyzed proposals share many aspects in
common, the BLNS framework excels in: having the shortest proof dimension (resulting in the smallest
credential size, i.e., around 125 KB), having a higher degree of maturity in terms of implementability by
providing several pages of pseudocode, and presenting an application suitable for the Web scenario.

From a cryptographic point of view, the BLNS framework has a common component with the PQ KEM N-th
degree Truncated polynomial Ring Units (NTRU) [113, 114]. Such components are also implemented in
the digital signature FALCON [13], which has been selected by NIST to be one of the next post-quantum
standards. In particular, the BLNS framework [97] uses two functions from NTRU, called NTRU.TrapGen
and GSampler.

NTRU is a lattice-based encryption scheme first proposed in 1996 [113, 114] and it has been presented
to the NIST’s call for post-quantum algorithms, reaching the third round as a finalist. Even if it has not

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
52

PUBLIC D1.4 Analysis and design of PQ building blocks

been chosen for standardization, NIST is very confident on its security guarantees, that are comparable to
the next post-quantum standard KYBER: “One of the difficult choices NIST faced was deciding between
KYBER, NTRU, and Saber. All three were selected as finalists and were very comparable to each other.
NIST is confident in the security that each provides. Most applications would be able to use any of them
without significant performance penalties” [115, page 18]. Moreover, NTRU was the first alternative can-
didate in case of patent issues of KYBER: “If the agreements are not executed by the end of 2022, NIST
may consider selecting NTRU instead of KYBER” [115, Page 18, footnote 6]. This is a huge hint that, even
if it has not been standardized, there are no arguments against its security, and the community agrees that
the confidence level is high enough to use it in practical applications.

Furthermore, the BLNS framework is based on many different cryptographic assumptions that, under some
additional hypothesis, are considered equivalent to the Module Short Integer Solution (MSIS) or the Module
Learning with Errors (MLWE) assumptions [116]. Both MSIS and MLWE are also directly used by the
BLNS framework to prove some security properties. These two are standard cryptographic assumptions,
and their non-module versions (SIS and LWE) were introduced by Ajtai in 1996 [103] and Regev in 2005
[117], respectively. Their module version was instead introduced by Langlois and Stehlé in 2015 [116]. The
BLNS framework uses these two assumptions various times to guarantee that the underlying protocols are
secure. Since these assumptions are both used in the newly standardized algorithms ML-KEM [118] and
ML-DSA [44], we are confident in their security and, nowadays, we could consider them “standard lattice
assumptions”.

Under the above assumptions, the BLNS framework is proven secure because it possesses the following
security features.

1. Anonymity. Suppose that the Issuer and Verifier are malicious and possibly coallied. Moreover,
suppose that there are two lists of the same length of attributes attrs0 and attrs1 and a subset
of indexes idx such that for every index in idx the attributes of attrs0 and attrs1 are the same. The
anonymity property says that the issuing and the verification of a set of attributes gives no information
on the non-disclosed attributes of the Holder.

2. One-More Unforgeability. Any group with one or more malicious Holders, that presented multiple
times some attributes of their VCs, is not able to produce a VP for a set of attributes that has not
been issued by the Issuer. This means that the only way to produce a correct VP is from an honestly
and correctly issued VC.

The above properties imply that the scheme is secure against any coalition including malicious Issuer(s),
malicious Holder(s) and Verifier(s) who try to obtain some information about a target Holder. Moreover,
any coalition of malicious Verifiers cannot link the same Holder across different verifications.

Finally, Figure 8.2 illustrates the high-level architecture and the dependencies of the functions involved in
the BLNS framework. BLNS will be implemented for the demonstration of PQ anonymous VCs in the Web
scenario.

Further details of the BLNS framework, its protocols, the relevant data, and the various functions consid-
ered in the implementation are provided in Appendix C.

8.3.3. Revocation Mechanism for Anonymous Verifiable Credentials

In order to implement an efficient revocation mechanism for PQ anonymous VC, there are two possible
alternatives, as discussed in Section 8.2.3.

Since there are no PQ versions of the accumulator-based solution, we selected a timestamp approach
similar to the one described in [109] that is PQ secure by construction (i.e., it does not rely on asymmetric
cryptography). The timestamp approach can be adapted and implemented for the BLNS framework.

This solution has the advantage that the Verifier only checks that the VC is referred to the correct epoch,
without having to check a revocation list. The cost of updating the VC is minimal for the Holder and

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
53

PUBLIC D1.4 Analysis and design of PQ building blocks

Issuer.KeyGen Issuer.VerCred Holder.VerCred1 Holder.VerCred2 Holder.VerPres Verifier.Verify

NTRU.TrapGen GSampler VerifyHCom

Com ProveHCom

Com ProveHISIS

ISIS VerifyHISIS

ISIS

LHC.Verifyi LHC.Comi LHC.Openi

Rej

Figure 8.2: BLNS high-level architecture, involved functions and dependencies

are comparable to other solutions for the Issuer. Furthermore, this approach enables a rich revocation
semantic, since the credential can be partially revoked and/or updated (i.e., only some VC attributes).

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
54

PUBLIC D1.4 Analysis and design of PQ building blocks

9. IKE-less IPsec

9.1. Introduction

Internet Protocol (IP) in both versions, IPv4 and IPv6, is the main protocol that allows communication as
we understand today in Internet. The IP design lacks any security mechanism, and this is why IPsec [119]
was introduced. IPsec protocol works at the network layer, protecting and authenticating IP packets. As
a simple definition, IPsec is a framework of open standards, algorithm-independent, to provide data con-
fidentiality, data integrity, anti-replay protection, and origin authentication. IPsec provides these features
adding a new header directly in the IP packet (transport or host-to-host mode), or as part of an encapsu-
lation of the original IP packet in a new one (tunnel mode or VPN). In both cases, the header carries the
information that allows authentication and integrity verification of the IP packet payload, applying different
algorithms [120]. Optionally IPsec can encrypt the payload. All protocols used in these processes be-
long to the symmetric cryptography family (confidentiality) or to hashing-related algorithms (integrity and
authentication) and therefore are less affected by the development of a CRQC and Shor’s algorithm [93].
The use of these algorithms does not require to migrate to quantum-secure alternatives, at this stage [121].

Internet Key Exchange (IKE) is an optional and complementary protocol associated with IPsec to im-
plement key management strategies, see Figure 9.1. IKE main functions are session negotiation and
establishment, peer authentication, and key generation and exchange. IKE allows user to define security
policies in terms of algorithms to use, length of keys, and automate re-keying and deletion. The latest
version IKEv2 [122] depends strongly on key exchange and asymmetric cryptography [123], requiring a
PQ migration strategy.

Figure 9.1: IPsec and IKE architecture.

QUBIP proposes a straightforward approximation to the transition of IPsec to PQC, by removing the IKEv2
protocol and substituting it with a Software-Defined Networking (SDN) solution based on standards (see
Section 9.1.1), and with the support of the additional tools to apply quantum-secure mechanisms.

9.1.1. Centrally Controlled IPSec

A recent IETF standard [1], proposes an alternative that avoids the use of IKEv2 protocol (IPsec IKE-less),
in an approach that uses the SDN concept. QUBIP proposes the adoption of this standardized approach
as the starting point for an agile and transitional cryptography model.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
55

PUBLIC D1.4 Analysis and design of PQ building blocks

Figure 9.2: IPsec IKE-less model from RFC-9061 [1].

A simplified version of the IKE-less approach is represented in Figure 9.2. An administrator defines
general flow-based security policies (1). These policies are translated by a centralized controller (e.g.,
SDN controller) to the specific IPsec entries for Security Policy Database (SPD) and Security Association
Database (SAD), which contains the cryptographic algorithms type and key length for IPsec, the re-keying
rules, and routing rules. Those configurations are delivered (2) to the component that will translate them to
the Interface to Network Security Function (I2NSF) standardized format. Later, the controller sends them
(3) to the IPsec endpoints Network Security Function (NSF) or Centrally Controlled IPSec (CCIPS) agents.
Finally, the IPsec connection is established (4).

9.1.2. Hybridization

The hybridization of key material refers to the process of combining different cryptographic keys or key
generation methods from multiple cryptographic systems to enhance overall security.

This concept is based on the principle that using keys generated or secured by diverse methods can
provide stronger protection against potential attacks, including those that might exploit weaknesses in a
single cryptographic system.

From the classical cryptography point of view, the key aspects include the combination of symmetric and
asymmetric encryption. Asymmetric encryption uses a pair of keys (public and private keys) for encryption
and decryption, and its security is based on a computationally hard mathematical problem, mainly factoring
large numbers, but it presents the problem that it is slower for large data transfers. As a counterpart, sym-
metric encryption uses a single key for both encryption and decryption. It is much faster than asymmetric
encryption, but less secure because the distribution of symmetric keys is not an easy operation.

Finally, we have the hybrid approach, where systems use asymmetric encryption to securely exchange
a symmetric key (known as a session key). Once both parties have the symmetric key, they switch to
the faster symmetric encryption for the rest of their communication. This method leverages the security
of asymmetric encryption for key distribution and the efficiency of symmetric encryption for data transfer.
The most famous example protocol of hybrid key exchange is TLS. This protocol uses hybrid schemes to
establish secure connections over the Internet. The initial handshake might involve asymmetric methods
to set up a secure channel, after which data is encrypted using symmetric encryption.

The benefits of (classical) key hybridization include, on one side, an enhancement in security, as com-

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
56

PUBLIC D1.4 Analysis and design of PQ building blocks

bining multiple encryption methods reduces the risk of the entire communication being compromised if
one method is broken, and, on the other side, an increase in the efficiency and the scalability, allowing
for the encryption of large volumes of data efficiently and making it practical for everyday use in a variety
of applications, ranging from secure web browsing to mobile phone traffic encryption, secure file transfer
protocols, confidential communications or any instance where secure data transmission is necessary.

Hybridization of QKD and PQC

Following the same philosophy as in classical key hybridization, it is possible to hybridize key material
for native quantum safe technology. The hybridization of key material between Quantum Key Distribution
(QKD) and PQC represents a pioneering approach in the evolution of cryptographic security, combining
the robustness of quantum-resistant algorithms with the inherent security features of quantum mechanics.

This hybridization sometimes just refers to the usage of PQC key encapsulation mechanisms and signa-
tures to authenticate and secure the classical channel that is needed to perform QKD [124, 125, 126], but
further ideas of combining the QKD key with some other PQC ones into a single key using a Key Deriva-
tion Function (KDF) — which can be for instance the combination of a hash function and a XOR mask
[127, 128] — have been proposed. The main aspects of quantum-secure Hybridization Key Material are:

• Different Cryptographic Systems: hybridization often involves keys from both classical and quantum
cryptographic systems. For example, combining QKD, which provides theoretically secure key ex-
change based on the principles of quantum mechanics, with PQC algorithms, which are designed to
be secure against attacks from CRQCs.

• Multi-Layer Security : by using keys from different systems, hybridization aims to create a multi-
layered security approach where the breach of one layer does not compromise the overall security.
This is analogous to having multiple lines of defense in a security system.

• Enhanced Robustness: hybridization increases the robustness of cryptographic systems against fu-
ture technological advances that might break current encryption methods. For example, if future ad-
vancements in quantum computing render certain PQC algorithms vulnerable, the quantum-secure
keys distributed via QKD might still safeguard the system.

• Flexibility and Scalability : hybridization allows for greater flexibility in deployment and scalability.
Organizations can implement robust security measures that can be adapted to different operational
needs and threat levels, depending on the sensitivity and value of the information being protected.

Hybridizing QKD and PQC is an emerging approach in cybersecurity aimed at blending the strengths
of both technologies to create a robust defense against various types of cyber threats, including those
from CRQCs. However, while QKD provides theoretically secure key exchange, it requires a direct or
authenticated channel and is limited by infrastructure and distance constraints. PQC, on the other hand,
offers more flexibility and is easier to integrate into existing digital infrastructures, but the existence of
a quantum algorithm that is able to break its security is still an open question (although there is strong
evidence that support that there is no such quantum algorithm).

Hybrid systems aim to leverage the unconditional security of QKD for key distribution and the practicality
and scalability of PQC algorithms, ensuring long-term security against both classical and quantum threats.
By combining QKD and PQC, the hybrid system can protect against both potential vulnerabilities in PQC
algorithms (should future breakthroughs make them vulnerable to quantum attacks) and the technological
and implementation limitations of QKD. Furthermore, the dual-layer security model provides redundancy,
significantly enhancing security, which means that, even if one system is compromised, the other layer can
still secure the communications.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
57

PUBLIC D1.4 Analysis and design of PQ building blocks

Challenges in Hybridization

There are several challenges worth to be considered in the hybridization of QKD and PQC.

• Implementation Complexity : integrating two fundamentally different technologies involves signifi-
cant challenges, including compatibility issues, increased system complexity, and higher operational
costs.

• Performance Overheads: the hybrid system might introduce latency or overhead due to the need to
manage and operate two distinct cryptographic systems.

• Infrastructure Requirements: deploying QKD requires a physical infrastructure for quantum chan-
nels, which can be costly and logistically challenging.

Hybrid QKD/PQC systems represent a forward-thinking approach to cybersecurity, aiming to combine the
best of quantum-safe and quantum-proof technologies to secure communications against both current and
future threats. This approach is particularly pertinent, as we are moving closer to the quantum era.

9.1.3. Quantum Key Distribution

QKD is a cryptographic method that uses quantum mechanics to generate and share an encryption key
between two parties in a way that it is intrinsically secure from eavesdropping. QKD exploits the fundamen-
tal properties of quantum mechanics, such as the uncertainty principle and the no-cloning theorem [129],
to ensure that any attempt at eavesdropping can be detected. The most common form of QKD, the BB84
protocol [130] introduced by Bennett and Brassard in 1984, involves encoding of bits on the polarization
states of photons and securely distributing of qubits over a quantum channel. Any interception attempt
disturbs these quantum states, revealing the presence of an eavesdropper.

QKD has advanced significantly from a theoretical concept to practical implementations in recent years,
including deep integration with existing telecommunications infrastructure. Despite the challenge of main-
taining the integrity of quantum states over long distances, recent technologies have enabled successful
QKD over hundreds of kilometers using both fiber optic networks and free-space channels [131, 132, 133].
This makes QKD a robust solution for achieving long-term security, particularly valuable in an era where
conventional encryption could potentially be compromised by quantum computing. As such, QKD is being
increasingly tested in various applications from secure governmental communications to banking transac-
tions, being potentially the way for a new standard in secure communications.

QKD will establish a secure link using free-space channels to generate secret keys for the IPsec protocol.
This will be achieved through the implementation of the well-established BB84 protocol, which leverages
the inherent security principles of quantum mechanics.

The BB84 protocol relies on the transmission of single photons encoded with specific polarization states.
By comparing the transmitted and received states after successful detection, any eavesdropping attempt
will introduce detectable errors due to the quantum uncertainty principle.

To ensure reliable key generation over the free-space channel, error correction algorithms (belief propa-
gation decoding of LDPC codes) will be employed. This algorithm will identify and rectify errors introduced
by noise and imperfections in the channel and detectors, and by the quantum nature of light itself, guaran-
teeing the integrity of the generated keys.

Furthermore, post-processing techniques will be implemented to estimate the security of the established
keys and perform privacy amplification. This crucial step minimizes the information and eavesdropper
could potentially gain from any residual errors, further enhancing the overall security of the QKD protocol.

Finally, the generated keys will be stored within the QKD devices themselves. Both the sender and receiver
devices will possess identical keys, which will then be delivered to the key management component within
the CCIPS agent via the ETSI QKD 004 standard API [134]. This ensures seamless integration with

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
58

PUBLIC D1.4 Analysis and design of PQ building blocks

the overall IPsec infrastructure and facilitates the secure distribution of quantum-safe keys for the IPsec
encryption.

9.1.4. Remote Attestation

Integrity Verification will be included in the IPsec IKE-less architecture through Remote Attestation. The
latter will be implemented by means of a Trust Manager (acting as a Verifier) in order to verify trustworthi-
ness of the platform where CCIPS Agents are running. This process would occur before the establishment
of Security Association (SA) and the negotiation of cryptographic parameters, and periodically upon re-
quest from the Trust Manager. The Attestation Agent is in charge of generating and signing the quote,
which is sent to the Trust Manager for verification. The Trust Manager and the Attestation Agent will be
included in the overall architecture depicted in Figure 9.3.

A remote attestation protocol would need to accommodate PQ digital signature algorithms for signing the
attestation measurement.

Assuming successful remote attestation, the CCIPS Agents can communicate through a secure commu-
nication channel protected by IPsec.

9.2. Requirements

This section depicts those requirements associated with the transition to quantum-secure algorithms and
key management for the IPsec building block.

Table 9.1: IPsec IKE-less requirements

Req. Description

IPsec-01 Quantum secure authentication SHOULD be provided between IPsec endpoints,
without dependency on IKEv2

IPsec-02 The IPsec must support adoption of RFC-9061 in IKE-less mode as a replacement
of IKEv2 for the potential attacks to classical algorithms by quantum computers

IPsec-03 Keys must not be shared over non-quantum secure channels outside a security
perimeter

IPsec-04 The IPSec may use pre-shared keys to establish connections if the RFC-9061 inter-
face is not available as a quantum secure alternative

IPsec-05 The hybridization solution should combine keys generated by QKD systems, PQC
KEM algorithms and classical algorithms to produce robust derived keys, that offer
higher resistance than only one of the previous methods

IPsec-06 The hybridization solution should be able to generate non-hybrid quantum secure
keys in case of lack of one of the key sources (QKD or PQC)

IPsec-07 The hybridization solution should support standardized interfaces to retrieve keys
from QKD system (ETSI QKD 004), allowing different QKD manufactures, Quality of
Service (QoS) and size for the keys

IPsec-08 The hybridization solution must support a modular approach that will allow alternate
between different PQC algorithms, without impact on the functionality and external
interfaces of the solution (crypto agility)

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
59

PUBLIC D1.4 Analysis and design of PQ building blocks

IPsec-09 The attestation solution should provide additional protection based on quantum se-
cure mechanism in case of applying classical algorithms in hardware for attestation

IPsec-10 The QKD solution should provide quantum secure keys based on ETSI QKD 004
interface to be used by IPsec as part of the IKEv2 replacement

The requirements for remote attestation in the IPsec IKE-less architecture are explained in Table 9.2.

Table 9.2: Remote Attestation PQ requirements for IPsec IKE-less.

Req. Description

IPsecRA-01 The Attestation Agent MUST support PQ digital signature algorithms

IPsecRA-02 Key generation, signature generation and signature verification speed MUST be con-
sidered to choose PQ algorithms

IPsecRA-03 The Trust Manager MUST support PQ digital signature algorithms for verification

9.3. Design

The design of the solution for IPsec transition is fundamentally based on the concept established by RFC-
9061 [1] (see Section 9.1.1), combined with a hybridization solution and seeks to avoid the use of legacy
IKEv2.

The solution is depicted in Figure 9.3 where the main components are represented, and here detailed:

• CCIPS: including the controller and multiple agents (attached to IPsec engines) to manage and
establish dynamically on-demand different IPsec tunnels on the network. It distributes the IPsec SA
configuration as an alternative to IKEv2.

• PQC/QKD Hybridization: takes care of using one or more sources of raw key material to create
the symmetric keys needed by the IPsec. The role of this enabler is similar to a key management
system to collect, process and store keys from different sources, and provide them on demand to
the agents.

• QKD modules: provide a source of quantum-secure keys to the Hybridization module, based on an
alternative approach to PQC, using quantum mechanics principles.

• Trust Manager: coordinates the authentication and integrity verification of the software components
included in the agents.

• Attestation Agent: is in charge of generating the quote containing the software measurement
needed for remote attestation. The quote is digitally signed with a PQ algorithm.

The proposed solution works as it follows. First, when one or more IPsec connections are demanded
for a communication, the CCIPS Controller contacts the Trust Manager to identify and authenticate the
CCIPS Agents, before triggering the IPsec setup process. This process includes the remote attestation
of each agent involved. Once validated, the CCIPS agents receive the request with a common keyID and
contact their local hybridization modules to request the keys. The received keys are created on demand
by leveraging and mixing one or more of the possible methods to generate and agree upon keys: the
QKD module with the ETSI QKD 004 application interface, and/or the NIST KEM method. Man-in-The-
Middle (MiTM) attacks in the KEM key agreement method can be avoided by sharing public keys generated
in the previous attestation process by each agent. Once the Agent receives the keys, it adds them to the
final configurations, populate the local IPsec databases, and activates the IPsec tunnel.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
60

PUBLIC D1.4 Analysis and design of PQ building blocks

Figure 9.3: Overall design of the QKD/PQC hybrid IKE-less IPSec building block.

This initial design leverages as many standardized interfaces as possible to facilitate the transition to PQC:
ETSI QKD 004 for key request and delivery, IETF RFC-9061 [1] for policies and control, and NIST selected
KEM for PQC key agreements.

Our hybridization design follows the recommendations from NIST for cryptographic key generation [128].
There are essentially three different methods to derive one single key (the combined key) from multiple in-
dependent keys (the component keys): concatenation, exclusive-oring and key-extraction. The difference
among those three methods is essentially the complexity of the key combination process and the relation
between the min-entropies1 of each component key and the combined key.

• For the concatenation method, the combined key K can be derived from the component keys K1

and K2 as
K = K1||K2

Here the sum of the min-entropies of the component keys K1 and K2 shall be equal or greater than
the required min-entropy of the combined key K. Also, the size of the combined key will be the sum
of the sizes of the component keys.

• For the exclusive-oring method, the combined key K can be derived from the component keys K1

and K2 as
K = K1 ⊕K2 ⊕ 0̄

where 0̄ refers to a string of zeros of the same length as the component keys. This method requires
that at least one of the component keys has equal or greater min-entropy than the min-entropy
required for the combined key. Also, the length of each component key shall be equal the length of
the combined key.

• The key extraction process can be written as

K = T (HMAC-hash(salt,K1||K2), kLen)

where hash is a hash function, salt is a secret or non-secret value with length ≥ 0 (and must be
known by all entities using this method), kLen is the desired length of the combined key, and T is
the truncation function. The length of the output block of the hash function used with HMAC shall be
at least kLen bits, the required bit length for the combined key. The sum of the min-entropies of the

1When we refer to min-entropy of a key, we are referring to the min-entropy of the method used to generate or establish the key.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
61

PUBLIC D1.4 Analysis and design of PQ building blocks

component keys shall be equal to or greater than the min-entropy of the combined key and should
be at least twice that amount of min-entropy.

These three different methods will be implemented in the hybridization module, giving the possibility to
choose the one that fits better with the characteristics or conditions of the key material given by PQC
and QKD. The hybridization module will use, whenever possible, the component keys coming from QKD
and PQC to create a combined key through one of the three hybridization methods enumerated above.
However, if the component key given from one source is not available, the combined key will be the
component key obtained from the available source. This could be the case, for example, if the noise
of the QKD system is above the security threshold. It is worth to mention that this hybridization design is
not limited to the combination of one quantum key and one post-quantum key. The component keys K1

and K2 can be obtained through classical, quantum or post-quantum methods, and the combined key K
will remain secure as long as at least one component key remains secure.

This transition exercise addresses the security of network transmission based on the store-now-decrypt-
later threat model. Regarding the remote attestation, the Attestation agents will adopt PQ algorithms to
sign the attestation evidence generated by the physical (i.e., classical) TPM. Currently, a pure PQ physical
TPM has not been developed yet. Therefore, PQ integrity verification through remote attestation in the
IKE-less IPsec architecture will be integrated by means of a driver extension at kernel level to wrap the
quote (already signed with classical algorithms) with an additional PQ digital signature.

The TPM will also be in charge of securely storing the PQ keys used by the Attestation agent to sign
the quote. In this way, an initial experimental step will be made towards the development of a pure PQ
TPM, which is out of the scope of the QUBIP project. SLH-DSA has been chosen as PQ digital signature
algorithm during the remote attestation protocol.

The PQ keys will be generated by using the kernel driver extension, following secure practices to maintain
the integrity and confidentiality of the keys. In fact, such keys will be imported and stored in the TPM.
During this process, the private key must be encrypted with a key that the TPM can understand, using an
algorithm supported by the physical TPM, namely either RSA or ECC.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
62

PUBLIC D1.4 Analysis and design of PQ building blocks

10. Conclusions

The QUBIP partners have described in this deliverable their analysis and design for PQ transition of the
building blocks needed in the use cases of the project. However, it should be noted that the PQ scenario
is rapidly changing, so the content of this deliverable reflects the current SotA and the QUBIP partners
will do their best to follow its evolution during the project implementation. Nonetheless, we think that this
document provides useful considerations and hints for other people looking into transition to PQC.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
63

PUBLIC D1.4 Analysis and design of PQ building blocks

Bibliography

[1] R. Marin-Lopez, G. Lopez-Millan, and F. Pereniguez-Garcia, “A YANG Data Model for IPsec
Flow Protection Based on Software-Defined Networking (SDN)”, RFC-9061, July 2021, DOI
10.17487/RFC9061

[2] P. Kampanakis, P. C. van Oorschot, S. A. Vanstone, and Q. Nguyen, “Post-Quantum LMS and
SPHINCS+ Hash-Based Signatures for UEFI Secure Boot”, IACR Cryptology ePrint Archive, Re-
port 2021/041, 2021, https://eprint.iacr.org/2021/041.pdf

[3] F. Campos, T. Kohlstadt, S. Reith, and M. Stöttinger, “LMS vs XMSS: Comparison of Stateful Hash-
Based Signature Schemes on ARM Cortex-M4”, AFRICACRYPT 2020, Cairo (EG), July 2020,
pp. 258–277, DOI 10.1007/978-3-030-51938-4_13

[4] CCN, “Recommendations for a safe post-quantum transition”, December 2022,
https://www.ccn.cni.es/index.php/eu/docman/documentos-publicos/boletines-pytec/
499-ccn-tec-009-recomendaciones-transicion-postcuantica-segura-english/file

[5] ANSSI, “ANSSI views on the Post-Quantum Cryptography transition”, January 2022, https://cyber.
gouv.fr/en/publications/anssi-views-post-quantum-cryptography-transition

[6] ANSSI, “Follow up position paper on post-quantum cryptography”, December 2023, https://cyber.
gouv.fr/en/publications/follow-position-paper-post-quantum-cryptography

[7] BSI, “Cryptographic Mechanisms: Recommendations and Key Lengths. Technical Guideline
TR-02102”, February 2024, https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
TechGuidelines/TG02102/BSI-TR-02102-1.html

[8] NIST Computer Security Resource Center, “Post-Quantum Cryptography”, January 2017, https:
//csrc.nist.gov/projects/post-quantum-cryptography

[9] NSA, “Announcing the Commercial National Security Algorithm Suite 2.0”, 2022, https://media.
defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF

[10] E. Alkim, J. W. Bos, L. Ducas, K. Easterbrook, B. LaMacchia, P. Longa, I. Mironov, M. Naehrig,
V. Nikolaenko, C. Peikert, A. Raghunathan, and D. Stebila, “FrodoKEM: Learning With Er-
rors Key Encapsulation. Preliminary Draft Standards”, March 2023, https://frodokem.org/files/
FrodoKEM-ISO-20230314.pdf

[11] M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange, V. Maram, I. von Mau-
rich, R. Misoczki, R. Niederhagen, K. G. Paterson, E. Persichetti, C. Peters, P. Schwabe,
N. Sendrier, J. Szefer, C. J. Tjhai, M. Tomlinson, and W. Wang, “Classic McEliece: Conservative
code-based cryptography: Cryptosystem specification”, October 2022, https://classic.mceliece.org/
mceliece-spec-20221023.pdf

[12] S. O. Bradner, “Key words for use in RFCs to Indicate Requirement Levels”, RFC-2119, March 1997,
DOI 10.17487/RFC2119

[13] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, T. Ricosset, G. Seiler,
W. Whyte, and Z. Zhang, “Falcon: Fast-Fourier Lattice-based Compact Signatures over NTRU v1.2”,
October 2020, https://falcon-sign.info

[14] T. Reddy, “Post-Quantum Cryptography Recommendations for Internet Applications”, Internet Draft
RFC, March 2024, https://datatracker.ietf.org/doc/draft-reddy-uta-pqc-app/02/

[15] CA/Browser Forum, “Ballot SC22 – Reduce Certificate Lifetimes (v2)”, https://cabforum.org/2019/
09/10/ballot-sc22-reduce-certificate-lifetimes-v2/

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
64

https://doi.org/10.17487/RFC9061
https://eprint.iacr.org/2021/041.pdf
https://doi.org/10.1007/978-3-030-51938-4_13
https://www.ccn.cni.es/index.php/eu/docman/documentos-publicos/boletines-pytec/499-ccn-tec-009-recomendaciones-transicion-postcuantica-segura-english/file
https://www.ccn.cni.es/index.php/eu/docman/documentos-publicos/boletines-pytec/499-ccn-tec-009-recomendaciones-transicion-postcuantica-segura-english/file
https://cyber.gouv.fr/en/publications/anssi-views-post-quantum-cryptography-transition
https://cyber.gouv.fr/en/publications/anssi-views-post-quantum-cryptography-transition
https://cyber.gouv.fr/en/publications/follow-position-paper-post-quantum-cryptography
https://cyber.gouv.fr/en/publications/follow-position-paper-post-quantum-cryptography
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://frodokem.org/files/FrodoKEM-ISO-20230314.pdf
https://frodokem.org/files/FrodoKEM-ISO-20230314.pdf
https://classic.mceliece.org/mceliece-spec-20221023.pdf
https://classic.mceliece.org/mceliece-spec-20221023.pdf
https://doi.org/10.17487/RFC2119
https://falcon-sign.info
https://datatracker.ietf.org/doc/draft-reddy-uta-pqc-app/02/
https://cabforum.org/2019/09/10/ballot-sc22-reduce-certificate-lifetimes-v2/
https://cabforum.org/2019/09/10/ballot-sc22-reduce-certificate-lifetimes-v2/

PUBLIC D1.4 Analysis and design of PQ building blocks

[16] BSI, “Quantum-safe cryptography – fundamentals, current developments and recommen-
dations”, 2022, https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/
quantum-safe-cryptography.html

[17] D. McGrew, M. Curcio, and S. Fluhrer, “Leighton-Micali Hash-Based Signatures”, RFC-8554, April
2019, DOI 10.17487/RFC8554

[18] A. Huelsing, D. Butin, S.-L. Gazdag, J. Rijneveld, and A. Mohaisen, “XMSS: eXtended Merkle Sig-
nature Scheme”, RFC 8391, May 2018, DOI 10.17487/RFC8391

[19] K. Bashiri, S. Fluhrer, S.-L. Gazdag, D. V. Geest, and S. Kousidis, “Internet X.509 Public Key
Infrastructure: Algorithm Identifiers for HSS and XMSS”, Internet Draft RFC, May 2024, https:
//datatracker.ietf.org/doc/draft-ietf-lamps-x509-shbs/00/

[20] NSA, “The commercial national security algorithm suite 2.0 and quantum computing FAQ”, Septem-
ber 2022, https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF

[21] A. Huelsing, D. Butin, S.-L. Gazdag, J. Rijneveld, and A. Mohaisen, “XMSS: eXtended Merkle Sig-
nature Scheme”, RFC-8391, May 2018, DOI 10.17487/RFC8391

[22] GSMA Association, “Post Quantum Cryptography – Guidelines for Telecom
Use Cases”, 2024, https://www.gsma.com/newsroom/wp-content/uploads//PQ.
03-Post-Quantum-Cryptography-Guidelines-for-Telecom-Use-v1.0.pdf

[23] GlobalSign, “Examples of Quantum-Safe X.509 Certificates”, https://github.com/globalsign/
example-pq-safe-x509

[24] Open Quantum Safe project, “Open Quantum Safe: software for the transition to quantum-resistant
cryptography”, https://openquantumsafe.org/

[25] IETF Hackathon, “IETF Hackathon – PQC Certificates”, https://github.com/IETF-Hackathon/
pqc-certificates

[26] Chromium Blog, “Protecting Chrome Traffic with Hybrid Kyber KEM”, https://blog.chromium.org/
2023/08/protecting-chrome-traffic-with-hybrid.html

[27] The Cloudflare Blog, “The state of the post-quantum Internet”, https://blog.cloudflare.com/pq-2024

[28] F. Bene and A. Kiss, “Public Key Infrastructure in the Post-Quantum Era”, IEEE 17th Int. Sym-
posium on Applied Computational Intelligence and Informatics (SACI), 2023, pp. 77–82, DOI
10.1109/SACI58269.2023.10158562

[29] C. Wang, W. Xue, and J. Wang, “Integration of Quantum-Safe Algorithms into X.509v3 Certificates”,
IEEE 3rd Int. Conf. on Electronic Technology, Communication and Information (ICETCI), Changchun
(China), 2023, DOI 10.1109/ICETCI57876.2023.10176713

[30] N. Bindel, B. Hale, D. Connolly, and F. Driscoll, “Hybrid signature spectrums”, Internet Draft RFC,
May 2024, https://datatracker.ietf.org/doc/draft-ietf-pquip-hybrid-signature-spectrums/00/

[31] C. Bonnell, J. Gray, D. Hook, T. Okubo, and M. Ounsworth, “A Mechanism for Encoding Differ-
ences in Paired Certificates”, Internet Draft RFC, January 2024, https://datatracker.ietf.org/doc/
draft-bonnell-lamps-chameleon-certs/03/

[32] M. Ounsworth, J. Gray, M. Pala, and J. Klaußner, “Composite ML-DSA for use in Internet PKI”,
Internet Draft RFC, March 2024, https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-sigs/
13/

[33] J. Massimo, P. Kampanakis, S. Turner, and B. Westerbaan, “Internet X.509 Public Key Infrastructure:
Algorithm Identifiers for ML-DSA”, Internet Draft RFC, February 2024, https://datatracker.ietf.org/
doc/draft-ietf-lamps-dilithium-certificates/03/

[34] NIST Computer Security Resource Center, “Post-quantum cryptography: Security
(evaluation criteria)”, 2017, https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
65

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography.html
https://doi.org/10.17487/RFC8554
https://doi.org/10.17487/RFC8391
https://datatracker.ietf.org/doc/draft-ietf-lamps-x509-shbs/00/
https://datatracker.ietf.org/doc/draft-ietf-lamps-x509-shbs/00/
https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/0/CSI_CNSA_2.0_FAQ_.PDF
https://doi.org/10.17487/RFC8391
https://www.gsma.com/newsroom/wp-content/uploads//PQ.03-Post-Quantum-Cryptography-Guidelines-for-Telecom-Use-v1.0.pdf
https://www.gsma.com/newsroom/wp-content/uploads//PQ.03-Post-Quantum-Cryptography-Guidelines-for-Telecom-Use-v1.0.pdf
https://github.com/globalsign/example-pq-safe-x509
https://github.com/globalsign/example-pq-safe-x509
https://openquantumsafe.org/
https://github.com/IETF-Hackathon/pqc-certificates
https://github.com/IETF-Hackathon/pqc-certificates
https://blog.chromium.org/2023/08/protecting-chrome-traffic-with-hybrid.html
https://blog.chromium.org/2023/08/protecting-chrome-traffic-with-hybrid.html
https://blog.cloudflare.com/pq-2024
https://doi.org/10.1109/SACI58269.2023.10158562
https://doi.org/10.1109/ICETCI57876.2023.10176713
https://datatracker.ietf.org/doc/draft-ietf-pquip-hybrid-signature-spectrums/00/
https://datatracker.ietf.org/doc/draft-bonnell-lamps-chameleon-certs/03/
https://datatracker.ietf.org/doc/draft-bonnell-lamps-chameleon-certs/03/
https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-sigs/13/
https://datatracker.ietf.org/doc/draft-ounsworth-pq-composite-sigs/13/
https://datatracker.ietf.org/doc/draft-ietf-lamps-dilithium-certificates/03/
https://datatracker.ietf.org/doc/draft-ietf-lamps-dilithium-certificates/03/
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/evaluation-criteria/security-(evaluation-criteria)

PUBLIC D1.4 Analysis and design of PQ building blocks

[35] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Papachristodoulou,
M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn, “SPHINCS: Practical stateless hash-based sig-
natures”, EUROCRYPT 2015, Sofia (BG), April 2015, pp. 368–397, DOI 10.1007/978-3-662-46800-
5_15

[36] D. Cooper, D. Apon, Q. Dang, M. Davidson, M. Dworkin, and C. Miller, “Recommendation for Stateful
Hash-Based Signature Schemes”, NIST SP800-208, October 2020, DOI 10.6028/NIST.SP.800-208

[37] A. Hülsing, C. Busold, and J. Buchmann, “Forward secure signatures on smart cards”, 19th Int.
Conf. on Selected Areas in Crytography, Windsor (CA), August 2012, pp. 66–80, DOI 10.1007/978-
3-642-35999-6_5

[38] S. Ghosh, R. Misoczki, and M. R. Sastry, “Lightweight Post-Quantum-Secure Digital Signature Ap-
proach for IoT Motes”, IACR Cryptology ePrint Archive, Paper 2019/122, 2019, https://eprint.iacr.
org/2019/122

[39] V. B. Y. Kumar, N. Gupta, A. Chattopadhyay, M. Kaspert, C. Krauß, and R. Niederhagen, “Post-
quantum secure boot”, 23rd Conf. on Design, Automation and Test in Europe, Grenoble (FR), 2020,
pp. 1582—-1585

[40] S. Fluhrer and P. Kampanakis, “LMS vs XMSS: A Comparison of the Stateful Hash-Based Signature
Proposed Standards”, IACR Cryptology ePrint Archive, Paper 2017/349, 2017. http://eprint.iacr.org/
2017/349

[41] L. K. Grover, “A fast quantum mechanical algorithm for database search”, 28th Annual ACM
Symposium on Theory of Computing, Philadelphia (PA, USA), 1996, pp. 212––219, DOI
10.1145/237814.237866

[42] M.-Z. Mina and E. Simion, “Threats to modern cryptography: Grover’s algorithm”, Preprints, Septem-
ber 2020, https://www.preprints.org/manuscript/202009.0677/v1

[43] D. J. Bernstein and T. Lange, “Post-quantum cryptography”, Nature, vol. 549, September 2017,
pp. 188–194, DOI 10.1038/nature23461

[44] NIST, “FIPS 204, Module-Lattice-Based Digital Signature Standard – Initial Public Draft”, 2023,
https://doi.org/10.6028/NIST.FIPS.204.ipd

[45] P. Urien, “Towards internet of secure elements”, IEEE 19th Annual Consumer Communica-
tions & Networking Conf. (CCNC), Las Vegas (NV, USA), January 2022, pp. 949–950, DOI
10.1109/CCNC49033.2022.9700663

[46] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3”, RFC-8446, August 2018,
DOI 10.17487/RFC8446

[47] M. Vauclair, “Secure element”, Encyclopedia of Cryptography and Security (H. C. A. van Tilborg and
S. Jajodia, eds.), pp. 1115–1116, Springer, 2011, DOI 10.1007/978-1-4419-5906-5_303

[48] P. Urien, “Internet of secure elements concepts and applications”, 7th Int. Conf. on Mobile And
Secure Services (MobiSecServ), Gainesville (FL, USA), March 2022, pp. 1–6, DOI 10.1109/Mo-
biSecServ50855.2022.9727207

[49] NIST, “FIPS 140-3, Security Requirements for Cryptographic Modules”, 2019, https://nvlpubs.nist.
gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf

[50] NIST, “FIPS 140-2, Security Requirements for Cryptographic Modules”, 2001, https://nvlpubs.nist.
gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf

[51] GlobalPlatform Security Task Force, “Secure Channel Protocol ‘03’ – Amendment D v1.2”, 2020,
https://globalplatform.org/specs-library/secure-channel-protocol-03-amendment-d-v1-2/

[52] ST Microelectronics, “STM32F4 Series”, https://www.st.com/en/microcontrollers-microprocessors/
stm32f4-series.html

[53] Digilent, “Genesys 2”, https://digilent.com/reference/programmable-logic/genesys-2/start

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
66

https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.1007/978-3-642-35999-6_5
https://doi.org/10.1007/978-3-642-35999-6_5
https://eprint.iacr.org/2019/122
https://eprint.iacr.org/2019/122
http://eprint.iacr.org/2017/349
http://eprint.iacr.org/2017/349
https://doi.org/10.1145/237814.237866
https://www.preprints.org/manuscript/202009.0677/v1
https://doi.org/10.1038/nature23461
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.1109/CCNC49033.2022.9700663
https://doi.org/10.17487/RFC8446
https://doi.org/10.1007/978-1-4419-5906-5_303
https://doi.org/10.1109/MobiSecServ50855.2022.9727207
https://doi.org/10.1109/MobiSecServ50855.2022.9727207
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
https://globalplatform.org/specs-library/secure-channel-protocol-03-amendment-d-v1-2/
https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html
https://digilent.com/reference/programmable-logic/genesys-2/start

PUBLIC D1.4 Analysis and design of PQ building blocks

[54] ARM, “ARM IHI 0022 – AMBA AXI Protocol”, 2023, https://documentation-service.arm.com/static/
651c285c15583d1bff972f94

[55] Xilinx, “Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit”, 2024, https://www.xilinx.com/products/
boards-and-kits/zcu104.html

[56] Trusted Firmware project, “Trusted Firmware-M Documentation”, https://tf-m-user-guide.
trustedfirmware.org/

[57] Trusted Firmware project, “OP-TEE Documentation”, https://optee.readthedocs.io/en/latest/

[58] The OpenSSL project, “Cryptography and SSL/TLS Toolkit”, https://www.openssl.org

[59] The OpenSSL project, “provider OpenSSL 3.2 Manpage”, January 2024, https://www.openssl.org/
docs/man3.2/man7/provider.html

[60] F. Driscoll and M. Parsons, “Terminology for Post-Quantum Traditional Hybrid Schemes”, Internet
Draft RFC, May 2024, https://datatracker.ietf.org/doc/draft-ietf-pquip-pqt-hybrid-terminology/03/

[61] Mozilla, “Network Security Services (NSS)”, https://firefox-source-docs.mozilla.org/security/nss/
index.html

[62] Mozilla, “Netscape Portable Runtime (NSPR)”, https://firefox-source-docs.mozilla.org/nspr/index.
html

[63] E. Rescorla and T. Dierks, “The Transport Layer Security (TLS) Protocol Version 1.2”, RFC-5246,
August 2008, DOI 10.17487/RFC5246

[64] J. Schaad, B. C. Ramsdell, and S. Turner, “Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 4.0 Message Specification”, RFC-8551, April 2019, DOI 10.17487/RFC8551

[65] S. Turner, “Asymmetric Key Packages”, RFC-5958, August 2010, DOI 10.17487/RFC5958

[66] K. Moriarty, M. Nyström, S. Parkinson, A. Rusch, and M. Scott, “PKCS#12: Personal Information
Exchange Syntax v1.1”, RFC-7292, July 2014, DOI 10.17487/RFC7292

[67] OASIS PKCS#11 TC, “PKCS#11 specification version 3.1”, July 2023, https://docs.oasis-open.org/
pkcs11/pkcs11-spec/v3.1/os/pkcs11-spec-v3.1-os.html

[68] Trusted Firmware project, “MbedTLS library”, https://github.com/Mbed-TLS/mbedtls

[69] Trusted Firmware project, “Trusted firmware, Open Source Secure Software”, https://www.
trustedfirmware.org/

[70] Trusted Firmware project, “Trusted Firmware-A Documentation”, https://trustedfirmware-a.
readthedocs.io/en/latest/

[71] The OpenSSL project, “Capabilities at provider-base OpenSSL 3.2 Manpage”, January 2024, https:
//www.openssl.org/docs/man3.2/man7/provider-base.html#CAPABILITIES

[72] NIST CSRC, “PQC – API Notes”, March 2017, https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/archive/api-march2017.pdf

[73] The OpenSSL project, “Apache License Version 2.0”, https://www.openssl.org/source/
apache-license-2.0.txt

[74] S. Klabnik and C. Nichols, “The Rust Programming Language, 2nd Edition”, No Starch Press, 2023,
ISBN: 9781718503106. https://doc.rust-lang.org/book/ch19-06-macros.html

[75] Mozilla, “Mozilla Public License Version 2.0”, https://hg.mozilla.org/projects/nss/file/tip/COPYING

[76] Mozilla, “Oxidation: Integrating Rust into Mozilla’s Codebase”, November 2020, https://wiki.mozilla.
org/Oxidation

[77] Fedora, “Fedora Project”, https://fedoraproject.org

[78] Flatpak, “The future of apps on Linux”, https://flatpak.org/

[79] Open Quantum Safe project, “NIST algorithms in liboqs”, https://openquantumsafe.org/liboqs/
algorithms/

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
67

https://documentation-service.arm.com/static/651c285c15583d1bff972f94
https://documentation-service.arm.com/static/651c285c15583d1bff972f94
https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://tf-m-user-guide.trustedfirmware.org/
https://tf-m-user-guide.trustedfirmware.org/
https://optee.readthedocs.io/en/latest/
https://www.openssl.org
https://www.openssl.org/docs/man3.2/man7/provider.html
https://www.openssl.org/docs/man3.2/man7/provider.html
https://datatracker.ietf.org/doc/draft-ietf-pquip-pqt-hybrid-terminology/03/
https://firefox-source-docs.mozilla.org/security/nss/index.html
https://firefox-source-docs.mozilla.org/security/nss/index.html
https://firefox-source-docs.mozilla.org/nspr/index.html
https://firefox-source-docs.mozilla.org/nspr/index.html
https://doi.org/10.17487/RFC5246
https://doi.org/10.17487/RFC8551
https://doi.org/10.17487/RFC5958
https://doi.org/10.17487/RFC7292
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/os/pkcs11-spec-v3.1-os.html
https://docs.oasis-open.org/pkcs11/pkcs11-spec/v3.1/os/pkcs11-spec-v3.1-os.html
https://github.com/Mbed-TLS/mbedtls
https://www.trustedfirmware.org/
https://www.trustedfirmware.org/
https://trustedfirmware-a.readthedocs.io/en/latest/
https://trustedfirmware-a.readthedocs.io/en/latest/
https://www.openssl.org/docs/man3.2/man7/provider-base.html#CAPABILITIES
https://www.openssl.org/docs/man3.2/man7/provider-base.html#CAPABILITIES
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/archive/api-march2017.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/archive/api-march2017.pdf
https://www.openssl.org/source/apache-license-2.0.txt
https://www.openssl.org/source/apache-license-2.0.txt
https://doc.rust-lang.org/book/ch19-06-macros.html
https://hg.mozilla.org/projects/nss/file/tip/COPYING
https://wiki.mozilla.org/Oxidation
https://wiki.mozilla.org/Oxidation
https://fedoraproject.org
https://flatpak.org/
https://openquantumsafe.org/liboqs/algorithms/
https://openquantumsafe.org/liboqs/algorithms/

PUBLIC D1.4 Analysis and design of PQ building blocks

[80] Fedora, “Rawhide”, https://docs.fedoraproject.org/en-US/releases/rawhide/

[81] Mozilla, “Firefox browsers”, https://www.mozilla.org/en-GB/firefox/browsers/

[82] A. Preukschat and D. Reed, “Self-Sovereign Identity – Decentralized digital identity and ver-
ifiable credentials”, Manning, 2021, ISBN: 9781617296598. https://www.manning.com/books/
self-sovereign-identity

[83] W3C, “Decentralized Identifiers (DIDs) v1.0. Core architecture, data model, and representations.
W3C Recommendation”, 2022, https://www.w3.org/TR/did-core/

[84] W3C, “DID Specification Registries. The interoperability registry for Decentralized Identifiers. W3C
Group Note”, 2024, https://www.w3.org/TR/did-spec-registries/

[85] IOTA Foundation, “Digital Identity”, 2024, https://www.iota.org/solutions/digital-identity

[86] Privado ID, “Digital Identity”, 2024, https://www.privado.id/

[87] W3C, “did:web Method Specification”, 2023, https://w3c-ccg.github.io/did-method-web/

[88] W3C, “The did:key Method Specification. A DID Method for Static Cryptographic Keys”, 2022, https:
//w3c-ccg.github.io/did-method-key/

[89] W3C, “Verifiable Credentials Data Model v2.0. W3C Candidate Recommendation Draft”, 2024, https:
//www.w3.org/TR/vc-data-model-2.0/

[90] W3C, “Bitstring Status List v1.0: Privacy-preserving status information for Verifiable Credentials.
W3C Working Draft”, 2024, https://www.w3.org/TR/vc-bitstring-status-list/

[91] J. Camenisch and A. Lysyanskaya, “A signature scheme with efficient protocols”, Security in Com-
munication Networks, Amalfi (IT), September 2002, pp. 268–289, DOI 10.1007/3-540-36413-7_20

[92] IOTA Foundation, “IOTA Identity library”, 2024, https://github.com/iotaledger/identity.rs

[93] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer”, SIAM Journal on Computing, vol. 26, October 1997, pp. 1484–1509, DOI
10.1137/S0097539795293172

[94] J. Camenisch, M. Drijvers, and A. Lehmann, “Anonymous attestation using the strong Diffie-Hellman
assumption revisited”, TRUST-2016 – 9th Int. Conf. on Trust and Trustworthy Computing, Vienna
(AT), August 2016, pp. 1–20, DOI 10.1007/978-3-319-45572-3_1

[95] C. Jeudy, A. Roux-Langlois, and O. Sanders, “Lattice signature with efficient protocols, application
to anonymous credentials”, IACR Cryptology ePrint Archive, Paper 2022/509, 2022, https://eprint.
iacr.org/2022/509

[96] Q. Lai, C. Chen, F.-H. Liu, A. Lysyanskaya, and Z. Wang, “Lattice-based commit-transferrable signa-
tures and applications to anonymous credentials”, IACR Cryptology ePrint Archive, Paper 2023/766,
2023, https://eprint.iacr.org/2023/766

[97] J. Bootle, V. Lyubashevsky, N. K. Nguyen, and A. Sorniotti, “A framework for practical anonymous
credentials from lattices”, IACR Cryptology ePrint Archive, Paper 2023/560, 2023, https://eprint.iacr.
org/2023/560

[98] J. Bootle, V. Lyubashevsky, N. K. Nguyen, and A. Sorniotti, “A framework for practical anonymous
credentials from lattices”, CRYPTO 2023, Santa Barbara (CA, USA), August 2023, pp. 384–417,
DOI 10.1007/978-3-031-38545-2_13

[99] B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang, “Signature schemes with efficient pro-
tocols and dynamic group signatures from lattice assumptions”, ASIACRYPT 2016, Hanoi (VN),
December 2016, pp. 373–403, DOI 10.1007/978-3-662-53890-6_13

[100] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler, and
D. Stehlé, “CRYSTALS–Kyber: A CCA-Secure Module-Lattice-Based KEM”, IEEE European Sym-
posium on Security and Privacy (EuroS&P), London (UK), 2018, pp. 353–367, DOI 10.1109/Eu-
roSP.2018.00032

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
68

https://docs.fedoraproject.org/en-US/releases/rawhide/
https://www.mozilla.org/en-GB/firefox/browsers/
https://www.manning.com/books/self-sovereign-identity
https://www.manning.com/books/self-sovereign-identity
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-spec-registries/
https://www.iota.org/solutions/digital-identity
https://www.privado.id/
https://w3c-ccg.github.io/did-method-web/
https://w3c-ccg.github.io/did-method-key/
https://w3c-ccg.github.io/did-method-key/
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-data-model-2.0/
https://www.w3.org/TR/vc-bitstring-status-list/
https://doi.org/10.1007/3-540-36413-7_20
https://github.com/iotaledger/identity.rs
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1007/978-3-319-45572-3_1
https://eprint.iacr.org/2022/509
https://eprint.iacr.org/2022/509
https://eprint.iacr.org/2023/766
https://eprint.iacr.org/2023/560
https://eprint.iacr.org/2023/560
https://doi.org/10.1007/978-3-031-38545-2_13
https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032

PUBLIC D1.4 Analysis and design of PQ building blocks

[101] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé,
“CRYSTALS–Dilithium: A lattice-based digital signature scheme”, IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, vol. 2018, February 2018, pp. 238––268, DOI
10.13154/tches.v2018.i1.238-268

[102] V. Lyubashevsky, N. K. Nguyen, and M. Plançon, “Lattice-based zero-knowledge proofs and applica-
tions: Shorter, simpler, and more general”, CRYPTO 2022, Santa Barbara (CA, USA), August 2022,
pp. 71–101, DOI 10.1007/978-3-031-15979-4_3

[103] M. Ajtai, “Generating hard instances of lattice problems”, Electronic Colloquium on Computational
Complexity, vol. TR96, January 1996. https://eccc.weizmann.ac.il/report/1996/007/download

[104] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard lattices and new cryptographic
constructions”, IACR Cryptology ePrint Archive, Paper 2007/432, 2007, https://eprint.iacr.org/2007/
432

[105] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter, faster, smaller”, IACR Cryptol-
ogy ePrint Archive, Paper 2011/501, 2011, https://eprint.iacr.org/2011/501

[106] M. R. Albrecht, V. Cini, R. W. F. Lai, G. Malavolta, and S. A. Thyagarajan, “Lattice-based SNARKs:
Publicly verifiable, preprocessing, and recursively composable”, IACR Cryptology ePrint Archive,
Paper 2022/941, 2022, https://eprint.iacr.org/2022/941

[107] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and application to efficient revocation of
anonymous credentials”, CRYPTO 2002, Santa Barbara (CA, USA), August 2002, pp. 61–76, DOI
10.1007/3-540-45708-9_5

[108] J. Camenisch, M. Kohlweiss, and C. Soriente, “An accumulator based on bilinear maps and efficient
revocation for anonymous credentials”, PKC 2009, Irvine (CA, USA), March 2009, pp. 481–500, DOI
10.1007/978-3-642-00468-1_27

[109] J. Camenisch, M. Kohlweiss, and C. Soriente, “Solving revocation with efficient update of anonymous
credentials”, SCN 2010, Amalfi (IT), September 2010, pp. 454–471, DOI 10.1007/978-3-642-15317-
4_28

[110] Open Quantum Safe project, “liboqs”, 2024, https://github.com/open-quantum-safe/liboqs

[111] A. Pino, D. Margaria, and A. Vesco, “On PQ/T hybrid verifiable credentials and presentations to build
trust in IoT systems”, 9th Int. Conf. on Smart and Sustainable Technologies (SpliTech 2024), Split
(HR), June 2024. to be published

[112] N. Bindel, U. Herath, M. McKague, and D. Stebila, “Transitioning to a quantum-resistant public key
infrastructure”, Cryptology ePrint Archive, Paper 2017/460, 2017, https://eprint.iacr.org/2017/460

[113] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: a new high speed public key cryptosystem”,
presented at the rump session of Crypto’96, 1996, https://web.securityinnovation.com/hubfs/files/
ntru-orig.pdf

[114] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public key cryptosystem”, ANTS-III
– 3rd Int. Symp. on Algorithmic Number Theory, Portland (OR, USA), June 1998, pp. 267–288, DOI
10.1007/BFb0054868

[115] G. Alagic, D. Cooper, Q. Dang, T. Dang, J. M. Kelsey, J. Lichtinger, Y.-K. Liu, C. A. Miller,
D. Moody, R. Peralta, R. Perlner, A. Robinson, D. Smith-Tone, and D. Apon, “Status report on
the third round of the NIST post-quantum cryptography standardization process”, July 2022, DOI
10.6028/NIST.IR.8413

[116] A. Langlois and D. Stehlé, “Worst-case to average-case reductions for module lattices”, Designs,
Codes and Cryptography, vol. 75, June 2015, pp. 565–599, DOI 10.1007/s10623-014-9938-4

[117] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography”, 37th An-

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
69

https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.1007/978-3-031-15979-4_3
https://eccc.weizmann.ac.il/report/1996/007/download
https://eprint.iacr.org/2007/432
https://eprint.iacr.org/2007/432
https://eprint.iacr.org/2011/501
https://eprint.iacr.org/2022/941
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-15317-4_28
https://doi.org/10.1007/978-3-642-15317-4_28
https://github.com/open-quantum-safe/liboqs
https://eprint.iacr.org/2017/460
https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
https://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
https://doi.org/10.1007/BFb0054868
https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.1007/s10623-014-9938-4

PUBLIC D1.4 Analysis and design of PQ building blocks

nual ACM Symposium on Theory of Computing, Baltimore (MD, USA), 2005, pp. 84––93, DOI
10.1145/1060590.1060603

[118] NIST, “FIPS 203, Module-Lattice-Based Key-Encapsulation Mechanism Standard – Initial Public
Draft”, 2023, https://doi.org/10.6028/NIST.FIPS.203.ipd

[119] K. Seo and S. Kent, “Security Architecture for the Internet Protocol”, RFC-4301, December 2005,
DOI 10.17487/RFC4301

[120] IANA, “Internet Key Exchange Version 2 (IKEv2) Parameters”, 2024, https://www.iana.org/
assignments/ikev2-parameters/ikev2-parameters.xhtml

[121] NIST, “Post-Quantum Cryptography FAQs on Transition and Migration”, https://csrc.nist.gov/
Projects/post-quantum-cryptography/faqs#xisl

[122] C. Kaufman, P. E. Hoffman, Y. Nir, P. Eronen, and T. Kivinen, “Internet Key Exchange Protocol
Version 2 (IKEv2)”, RFC-7296, October 2014, DOI 10.17487/RFC7296

[123] Y. Nir, T. Kivinen, P. Wouters, and D. Migault, “Algorithm Implementation Requirements and Usage
Guidance for the Internet Key Exchange Protocol Version 2 (IKEv2)”, RFC-8247, September 2017,
DOI 10.17487/RFC8247

[124] D. Marchsreiter and J. Sepúlveda, “A PQC and QKD Hybridization for Quantum-Secure Commu-
nications”, 26th Euromicro Conf. on Digital System Design (DSD), Durres (AL), September 2023,
pp. 545–552, DOI 10.1109/DSD60849.2023.00081

[125] L.-J. Wang, K.-Y. Zhang, J.-Y. Wang, J. Cheng, Y.-H. Yang, S.-B. Tang, D. Yan, Y.-L. Tang, Z. Liu,
Y. Yu, Q. Zhang, and J.-W. Pan, “Experimental Athentication of Quantum Key Distribution with Post-
Quantum Cryptography”, npj Quantum Information, vol. 7, May 2021, p. 67, DOI 10.1038/s41534-
021-00400-7

[126] A. Prakasan, K. Jain, and P. Krishnan, “Authenticated-encryption in the quantum key distribution
classical channel using post-quantum cryptography”, 6th Int. Conf. on Intelligent Computing and
Control Systems (ICICCS), 2022, pp. 804–811, DOI 10.1109/ICICCS53718.2022.9788239

[127] M. Geitz, R. Döring, and R.-P. Braun, “Hybrid QKD & PQC Protocols Implemented in the Berlin
OpenQKD Testbed”, 8th Int. Conf. on Frontiers of Signal Processing (ICFSP), 2023, pp. 69–74, DOI
10.1109/ICFSP59764.2023.10372894

[128] E. Barker, E. Barker, A. Roginsky, and R. Davis, “Recommendation for cryptographic key generation
(revision 2)”, NIST SP800-133r2, June 2020, DOI 10.6028/NIST.SP.800-133r2

[129] B. Zhao, B. Liu, C. Wu, W. Yu, and I. You, “A tutorial on quantum key distribution”, 10th Int. Conf. on
Broadband and Wireless Computing, Communication and Applications (BWCCA), November 2015,
DOI 10.1109/bwcca.2015.77

[130] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing”,
Theoretical Computer Science, vol. 560, December 2014, pp. 7––11, DOI 10.1016/j.tcs.2014.05.025

[131] Y. Liu, W.-J. Zhang, C. Jiang, J.-P. Chen, C. Zhang, W.-X. Pan, D. Ma, H. Dong, J.-M. Xiong, C.-
J. Zhang, H. Li, R.-C. Wang, J. Wu, T.-Y. Chen, L. You, X.-B. Wang, Q. Zhang, and J.-W. Pan,
“Experimental Twin-Field Quantum Key Distribution over 1000 km Fiber Distance”, Physical Review
Letters, vol. 130, May 2023, p. 210801, DOI 10.1103/PhysRevLett.130.210801

[132] R. Sax, A. Boaron, G. Boso, S. Atzeni, A. Crespi, F. Grünenfelder, D. Rusca, A. Al-Saadi, D. Bronzi,
S. Kupijai, H. Rhee, R. Osellame, and H. Zbinden, “High-speed integrated QKD system”, Photonics
Research, vol. 11, June 2023, pp. 1007–1014, DOI 10.1364/PRJ.481475

[133] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring,
C. Lupo, C. Ottaviani, J. Pereira, M. Razavi, J. S. Shaari, M. Tomamichel, V. C. Usenko, G. Val-
lone, P. Villoresi, and P. Wallden, “Advances in Quantum Cryptography”, Advances in Optics and
Photonics, vol. 12, December 2020, p. 1012, DOI 10.1364/AOP.361502

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
70

https://doi.org/10.1145/1060590.1060603
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.17487/RFC4301
https://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml
https://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml
https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs#xisl
https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs#xisl
https://doi.org/10.17487/RFC7296
https://doi.org/10.17487/RFC8247
https://doi.org/10.1109/DSD60849.2023.00081
https://doi.org/10.1038/s41534-021-00400-7
https://doi.org/10.1038/s41534-021-00400-7
https://doi.org/10.1109/ICICCS53718.2022.9788239
https://doi.org/10.1109/ICFSP59764.2023.10372894
https://doi.org/10.6028/NIST.SP.800-133r2
https://doi.org/10.1109/bwcca.2015.77
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1103/PhysRevLett.130.210801
https://doi.org/10.1364/PRJ.481475
https://doi.org/10.1364/AOP.361502

PUBLIC D1.4 Analysis and design of PQ building blocks

[134] ETSI, “Quantum Key Distribution (QKD); Application Interface”, 2020, https://www.etsi.org/deliver/
etsi_gs/QKD/001_099/004/02.01.01_60/gs_qkd004v020101p.pdf

[135] Cisco Systems, “A full-featured implementation of of the LMS and HSS Hash Based Signature
Schemes from draft-mcgrew-hash-sigs-07”, https://github.com/cisco/hash-sigs

[136] SPHINCS+ Team, “SPHINCS+ Implementation”, https://github.com/sphincs/sphincsplus

[137] A. Huelsing, D. Butin, S.-L. Gazdag, J. Rijneveld, and A. Mohaisen, “XMSS Reference Code”, https:
//github.com/XMSS/xmss-reference

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
71

https://www.etsi.org/deliver/etsi_gs/QKD/001_099/004/02.01.01_60/gs_qkd004v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/QKD/001_099/004/02.01.01_60/gs_qkd004v020101p.pdf
https://github.com/cisco/hash-sigs
https://github.com/sphincs/sphincsplus
https://github.com/XMSS/xmss-reference
https://github.com/XMSS/xmss-reference

PUBLIC D1.4 Analysis and design of PQ building blocks

A. DID Document, VC and VP Data Models

The following paragraphs present examples of a DID document, a VC, and a VP in JavaScript Object
Notation (JSON) format compliant with the W3C specified data models [83, 89].

Here is an example of DID document, refer to [83] for detailed explanation of all fields.

"id": "did:method_name:method_specific_id",
"authentication": [{

"id": "did:method_name:method_spec_id#keys-1",
"type": "JsonWebKey2020",
"controller": "did:method_name:method_spec_id",
"publicKeyJwk": { .. encoded public key .. }
},{
"id": "did:method_name:method_spec_id#keys-2",
"type": "JsonWebKey2020",
"controller": "did:method_name:method_spec_id",
"publicKeyJwk": { .. encoded public key .. }

}]

Here is an example of Verifiable Credential, refer to [89] for detailed explanation of all fields.

"@context": ["https://www.w3.org/2018/credentials/v1"],
"id": "https://address/credentials/1",
"type": ["VerifiableCredential"],
"issuer": "did:method_name:method_specific_id",
"issuanceDate": " .. date and time .. ",
"expirationDate": " .. date and time .. ",
"credentialSubject": {

"id": "did:method_name:method_specific_id",
.. properties to describe the identity ..

},
"credentialStatus": {

"id": "https://address/credentials/status/#",
"type": "BitstringStatusListEntry",
"statusPurpose": "revocation",
"statusListIndex": " .. index .. ",

}
"proof": {

"type": " .. type of signature .. ",
"created": " .. date and time .. ",
"proofPurpose": "assertionMethod",
"verificationMethod": "did:method_name:method_specific_id#fragment",
"proofValue": " .. the encoded signature .. "

}

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
72

PUBLIC D1.4 Analysis and design of PQ building blocks

Here is an example of Verifiable Presentation, refer to [89] for detailed explanation of all fields.

"@context": ["https://www.w3.org/2018/credentials/v1"],
"type": "VerifiablePresentation",
"verifiableCredential": [{ .. the VC .. }],
"proof": {

"type": " .. type of signature .. ",
"created": " .. date and time .. ",
"proofPurpose": "authentication",
"verificationMethod": "did:method_name:method_specific_id#fragment",
"challenge": " .. challenge from the Verifier .. ",
"proofValue": " .. the encoded signature .. "

}

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
73

P
U

B
LIC

D
1.4

A
nalysis

and
design

ofP
Q

building
blocks

B. Experimental Evaluation of NIST Selected PQ Signature Algorithms

Table B.1: Performance of liboqs implementations of NIST selected PQ digital signature algorithms on a Intel® Core™ i7-1255U 1.70 GHz, Intel
Turbo Boost disabled, RAM 24.0 GB 3200 MHz; keypair and signature generation and signature verification values are the average over 1000 runs.

NIST Public Key Size Sign Size Keypair Generation Sign Generation Sign Verification
Algorithm Security Level JWK encoded (Bytes) (Bytes) (ms) (ms) (ms)

Ed25519 - 145 64 0,042 0,042 0,070

FALCON 512 1 1291 752 13,361 0,685 0,086

SLH-DSA-SHA2-128f 1 147 17088 2,745 61,541 3,686

SLH-DSA-SHA2-128s 1 147 7856 167,310 1263,700 1,331

SLH-DSA-SHAKE-128f 1 148 17088 3,802 86,079 5,023

SLH-DSA-SHAKE-128s 1 148 7856 238,820 1807,600 1,848

ML-DSA-44 2 1845 2420 0,252 0,694 0,151

ML-DSA-65 3 2698 3293 0,373 1,028 0,241

SLH-DSA-SHA2-192f 3 168 35664 3,892 100,110 5,375

SLH-DSA-SHA2-192s 3 168 16224 241,470 2250,100 1,925

SLH-DSA-SHAKE-192f 3 169 35664 5,575 141,390 7,815

SLH-DSA-SHAKE-192s 3 169 16224 348,670 3124,700 2,613

FALCON 1024 5 2487 1462 40,792 1,140 0,168

ML-DSA-87 5 3551 4595 0,503 1,263 0,405

SLH-DSA-SHA2-256f 5 190 49856 10,001 204,800 5,490

SLH-DSA-SHA2-256s 5 190 29792 159,610 1990,700 2,796

SLH-DSA-SHAKE-256f 5 191 49856 14,513 291,390 7,824

SLH-DSA-SHAKE-256s 5 191 29792 230,200 2766,500 3,815

This
projecthas

received
funding

from
the

E
uropean

U
nion

underthe

H
orizon

E
urope

fram
ew

ork
program

m
e

[grantagreem
entno.

101119746].
74

PUBLIC D1.4 Analysis and design of PQ building blocks

C. BLNS Framework

This appendix provides a high-level description of the BLNS framework [97, 98], that has been selected
and adopted in QUBIP as a building block for the PQ Anonymous Verifiable Credentials system (see
Chapter 8). In detail, after recalling the mathematical notation, the following sections briefly present the
BLNS protocols, the relevant data, and the different functions considered in the implementation, according
to previous Figure 8.2.

C.1. Notation

• [N] := {1, 2, . . . , N}.
• Z[X] is the ring of polynomials with coefficients in Z.

• Zq[X] is the ring of polynomials with coefficients in Zq.

• R := Z[X]/(Xd + 1) is the ring whose elements are polynomials of the form f = f0 + f1X + · · ·+
fd−1X

d−1 with f0, f1, . . . , fd−1 ∈ Z, where addition is performed coefficient-wise, and multiplication
is performed modulo Xd + 1.

• Rq := Zq[X]/(Xd + 1) is the ring whose elements are polynomials of the form f = f0 + f1X +
· · · + fd−1X

d−1 with f0, f1, . . . , fd−1 ∈ Zq, where addition is performed coefficient-wise modulo q,
and multiplication is performed modulo Xd + 1.

C.2. BLNS Protocols

To explain with a bit more of detail the structure of the BLNS framework, Figure C.1 shows the protocol
between Holder and Verifier, for the issuing of a VC, while Figure C.2 shows the protocol between the
Holder and the Verifier, for the verification of a VP.

Holder(ipk, attrs, idx) Issuer(isk)

VC← emptyVC()

VC.cp← “BLNS23”

VC.ipk← ipk

VC.attrs← attrs

(ρ1, state)← Holder.VerCred1(ipk, attrs, idx)

attrs′ ← attrsidx

ρ1, attrs
′, idx

ρ2 ← Issuer.VerCred(isk, attrs′, idx, ρ1)

ρ2

VC.pm← Holder.VerCred2(ipk, ρ2, state)

return VC

Figure C.1: BLNS Issuing protocol

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
75

PUBLIC D1.4 Analysis and design of PQ building blocks

Holder(VC, idx) Verifier(isk)

VP← Holder.VerPres(VC, idx)

VP

if Verifier.Verify(VP) then

return accept

else

return reject

Figure C.2: BLNS Verification protocol

C.3. Data

• ipk: public key of the issuer.

• isk: secret key of the issuer.

• attrs: set of attributes (a1, . . . , al), where each ai ∈ {0, 1}∗ is a string of bits of arbitrary length.

• idx: set of disclosed indices (i1, . . . , ik) ∈ Zk.

• attrs′: set of disclosed attributes (a′
1, . . . , a

′
k).

• cred: credential issued from the Issuer to the Holder. It is represented by a triple of elements (s, r, x),
where s ∈ Z2d is the short vector, r ∈ Rℓr

q is sampled from a certain distribution and x is generated
uniformly random from the set [N].

C.4. Issuer’s Functions

The Issuer’s functions are the following:

• Issuer.KeyGen: This function takes no input and returns as output a pair (ipk, isk), where ipk is the
public key of the issuer and isk is the secret key of the issuer.

• Issuer.VerCred: This function takes as input isk, the disclosed attributes attrs′, the set of disclosed
indices idx, and the vector ρ1 = (u, π) which contains the commitment u and the proof π . It returns
as output ρ2 = (s, x), where s is the output of the GSampler algorithm, and x is an integer uniformly
sampled from the set [N].

C.5. Holders’s Functions

The Holders’s functions are the following:

• Holder.VerCred1: This function takes as input ipk, the attributes attrs and the set of disclosed indices
idx. It returns as output ρ1 and state which contains the polynomial vectors m and r.

• Holder.VerCred2: This function takes as input ipk, ρ2 and state. It returns as output the triple cred =
(s, r, x).

• Holder.VerPres: This function takes as input idx and the Verifiable Credential VC which includes
some information such as ipk, attrs and cred. It returns as output a Verifiable Presentation VP, which
includes some information such as ipk, attrs′, idx and the proof π.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
76

PUBLIC D1.4 Analysis and design of PQ building blocks

C.6. Verifier’s Functions

The Verifier’s functions are the following:

• Verifier.Verify: This function takes as input the Verifiable Presentation VP and returns 1 if π is valid,
0 if the proof is invalid and ⊥ otherwise.

C.7. Other Functions

• NTRU.TrapGen: This function takes no input and returns the polynomial a1 and a basis B of the
2d-dimensional lattice Λ.

• GSampler: This function takes as input a polynomial h ∈ Rq, a polynomial vector a ∈ Rm
q , basis

B ∈ Z2d×2d, standard deviation s > 0 and a center c ∈ Zd. It returns as output the short vector s
and w ∈ Rm.

• ProveHCom
Com : This function takes as input a common reference string crsCom, a statement x and a

witness w. If all the checks pass, it returns the proof π.

• VerifyHCom
Com : This function takes as input a common reference string crsCom, the proof π and the

statement x. It returns as output “accept” or “reject”.

• ProveHISIS
ISIS : This function takes as input a common reference string crsISIS, a statement x and a

witness w. If all the checks pass, it returns the proof π.

• VerifyHISIS
ISIS : This function takes as input a common reference string crsISIS, a statement x and the

proof π. It returns as output “accept” or “reject”.

• LHC.Comi: This function takes as input si,yi ∈ R̂mi and a common reference string crsLHC
i . It

returns as output two values, a commitment com and st.

• LHC.Openi: This function takes as input a common reference string crsLHC
i and values (com, c) and

st. If the check passes, it returns as output op.

• LHC.Verifyi: This function takes as input a common reference string crsLHC
i , (com, c) and two values

(z, op). It returns as output “accept” or “reject”.

• Rej: This function takes as input two vectors of the same length z⃗ and x⃗, and two scalars s and M .
It returns as output “reject” or “accept”.

This project has received funding from the European Union under the

Horizon Europe framework programme [grant agreement no. 101119746].
77

P
U

B
LIC

D
1.4

A
nalysis

and
design

ofP
Q

building
blocks

D. Experimental Evaluation of PQ Hash Based Signature Algorithms

Table D.1 shows the comparison between LMS and SPHINCS+ that has been done in [2], where the algorithms were run on an Intel® Xeon CPU
@ 2.20 GHz with 2 cores and 7.68 GB RAM. Tests run 1000 times for each parameter set. For this table, signature generation and verification
time values were converted from mean of Mcycles to ms. The used LMS implementation is the Cisco one [135], while the original SPHINCS+

implementation [136] was used.

Table D.2 shows the performance comparison of LMS and XMSS done in [3], where [135] was used as LMS implementation, while XMSS was tested
using the official implementation [137]. The algorithms were run on an ARM Cortex-M4 board, to test the feasibility of hash-based PQ algorithms
on embedded systems. For signature generation and verification, the values were converted from mean of Mcycles to ms, assuming a 200 MHz
frequency.

Table D.1: Performance of LMS and SPHINCS+ algorithms [2].

NIST Public Key Size Sign Size Keypair Generation Sign Generation Sign Verification
Algorithm Security Level (Bytes) (KBytes) (ms) (ms) (ms)

LMS-SHA2-256 h=15, w=4 5 60 2,67 2519 0,520 0,168

LMS-SHA2-256 h=15, w=8 5 60 1,62 13720 2,835 1,298

LMS-SHA2-256 h=20, w=4 5 60 2,83 3222 0,666 0,170

LMS-SHA2-256 h=20, w=8 5 60 1,78 19373 4,003 1,299

SLH-DSA-SHA2-256 h=15, w=16 5 64 17,28 3 80,022 0,464

SLH-DSA-SHA2-256 h=15, w=256 5 64 14,11 26 151,900 3,202

SLH-DSA-SHA2-256 h=20, w=16 5 64 19,58 3 83,384 0,628

SLH-DSA-SHA2-256 h=20, w=256 5 64 15,36 26 178,888 4,633

This
projecthas

received
funding

from
the

E
uropean

U
nion

underthe

H
orizon

E
urope

fram
ew

ork
program

m
e

[grantagreem
entno.

101119746].
78

P
U

B
LIC

D
1.4

A
nalysis

and
design

ofP
Q

building
blocks

Table D.2: Performance comparison of LMS and XMSS on ARM Cortex-M4 using SHA-256 as hash function [3].

NIST Public Key Size Sign Size Keypair Generation Sign Generation Sign Verification
Algorithm Security Level (Bytes) (KBytes) (ms) (ms) (ms)

LMS-SHA2-256 h=5, w=16, d=1 5 60 2,352 589,945 632,584 12,883

LMS-SHA2-256 h=10, w=16, d=1 5 60 2,512 18874,411 18955,790 13,294

XMSS-SHA2-256 h=5, w=16, d=1 5 68 2,340 1216,273 1238,631 16,037

XMSS-SHA2-256 h=10, w=16, d=1 5 68 2,500 38922,540 38942,822 18,382

This
projecthas

received
funding

from
the

E
uropean

U
nion

underthe

H
orizon

E
urope

fram
ew

ork
program

m
e

[grantagreem
entno.

101119746].
79

Quantum-oriented Update to Browsers and Infrastructures for the PQ transition (QUBIP)

https://www.qubip.eu

D1.4 – Analysis and design of PQ building blocks

Version 1.0

Horizon Europe

https://www.qubip.eu

	1 Introduction
	2 Public-Key Infrastructure
	2.1 Introduction
	2.2 Requirements
	2.3 Current Trends
	2.3.1 Recommendations
	2.3.2 Existing Implementations

	2.4 Design

	3 Integrity Verification
	3.1 Introduction
	3.2 Requirements
	3.3 Design
	3.3.1 Secure Boot
	3.3.2 Measured Boot
	3.3.3 Remote Attestation

	4 IoT devices
	4.1 Introduction
	4.1.1 MCU-based IoT Device
	4.1.2 MPU-based IoT Device
	4.1.3 Secure Element

	4.2 Requirements
	4.3 Design

	5 Cryptographic Libraries
	5.1 Introduction
	5.2 Requirements
	5.2.1 OpenSSL Providers: Requirements
	5.2.2 NSS: Requirements
	5.2.3 NSS Modules: Requirements
	5.2.4 Mbed-TLS: Requirements

	5.3 Design
	5.3.1 OpenSSL Providers: Design
	5.3.2 NSS: Design
	5.3.3 NSS Modules: Design
	5.3.4 Mbed-TLS: Design

	6 Operating System
	6.1 Introduction
	6.2 Requirements
	6.3 Design

	7 Firefox Browser
	7.1 Introduction
	7.2 Requirements
	7.3 Design

	8 Self-Sovereign Identity
	8.1 Introduction
	8.2 Requirements
	8.2.1 Plaintext Verifiable Credentials
	8.2.2 Anonymous Verifiable Credentials
	8.2.3 Revocation Mechanism for Anonymous Verifiable Credentials

	8.3 Design
	8.3.1 Plaintext Verifiable Credentials
	8.3.2 Anonymous Verifiable Credentials
	8.3.3 Revocation Mechanism for Anonymous Verifiable Credentials

	9 IKE-less IPsec
	9.1 Introduction
	9.1.1 Centrally Controlled IPSec
	9.1.2 Hybridization
	9.1.3 Quantum Key Distribution
	9.1.4 Remote Attestation

	9.2 Requirements
	9.3 Design

	10 Conclusions
	Appendix A DID Document, VC and VP Data Models
	Appendix B Experimental Evaluation of NIST Selected PQ Signature Algorithms
	Appendix C BLNS Framework
	C.1 Notation
	C.2 BLNS Protocols
	C.3 Data
	C.4 Issuer's Functions
	C.5 Holders's Functions
	C.6 Verifier's Functions
	C.7 Other Functions

	Appendix D Experimental Evaluation of PQ Hash Based Signature Algorithms

