
Dawn of the
Post-Quantum Internet
Dr Bas Westerbaan, Cloudflare Research
QSNS 2024, Paris, June 26th, 2024

About Cloudflare
We run a global network spanning 320 cities in over 120
countries.
Started of as a CDN and DDoS mitigation company, we now
offer many more services, including
● 1.1.1.1, public DNS resolver
● Workers, serverless compute
● SASE, to protect corporate networks
We serve nearly 20% of all websites and
process 57 million HTTP requests per second.
>30% of Fortune 1000 are paying customers.

https://w3techs.com/technologies/overview/proxy/all

Building a better Internet
Cloudflare cares deeply about a private, secure and fast
Internet, helping design, and adopt, among others:
● Free SSL (2014), TLS 1.3 and QUIC
● DNS-over-HTTPS
● Private Relay / OHTTP
● Encrypted ClientHello
And, the topic today:
● Migrating to post-quantum

cryptography.

I
The quantum menace

Quantum computers are
great: efficient simulation of
nature → new materials &
medicine!

❤
Minor inconvenience: they’ll
break most cryptography.👻

Why care now?

1. Captured data encrypted
today can be decrypted
by a quantum computer
in the future.

2. Transitions take time.

When? Everyone is guessing

Interview with 32 experts, Mosca & Piani 2023

https://globalriskinstitute.org/mp-files/quantum-threat-timeline-report-2023.pdf/

Don’t just count qubits!

It’s about noise: Quantum computers are analog!

Credit: S. Jacques,
U. of Waterloo.

2021

https://sam-jaques.appspot.com/quantum_landscape
https://sam-jaques.appspot.com/quantum_landscape

Credit: S. Jacques,
U. of Waterloo.

2022

https://sam-jaques.appspot.com/quantum_landscape_2022
https://sam-jaques.appspot.com/quantum_landscape_2022

Credit: S. Jacques,
U. of Waterloo.

2023

https://sam-jaques.appspot.com/quantum_landscape_2023
https://sam-jaques.appspot.com/quantum_landscape_2023

Solution: Post-Quantum (PQ) Cryptography
NIST (SHA, AES) is running a competition since 2016.
We expect final standards late 2024.

Mostly lattice-based cryptography.

Type Original name NIST’s
name

FIPS
number

Signature Dilithium ML-DSA 204

Falcon FN-DSA ?

SPHINCS+ SLH-DSA 205

KEM (kex) Kyber ML-KEM 203

II
State of the post-quantum Internet

Overview of the current state of migration of the Internet /
WebPKI, and its unique challenges.

Changing the Internet / WebPKI is hard
● Very diverse. Many different users / stakeholders with

varying (performance) constraints and update cycles.
We can’t assume everyone is on fiber, or uses modern CPU, can
store state, or can update at all.

● Protocol ossification. Despite being designed to be
upgradeable, any flexibility that isn’t used in practice, is
probably broken, because of faulty implementations.

TLS 1.3 migration
Early versions of TLS 1.3 were
completely undeployable
because of protocol ossification.
After six more years of testing
and adding workarounds, the
final version of TLS 1.3 is a
success, used by over 90% of
our visitors.

Cloudflare Radar

https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/
https://radar.cloudflare.com/adoption-and-usage

There will be two post-quantum migrations.

1. Key agreement 🤝
Communication can be recorded today and decrypted in
the future. We need to upgrade as soon as possible.

2. Signatures 🖋
Less urgent: need to be replaced before the arrival of
cryptographically-relevant quantum computers.

3.

Key agreement 🤝
Urgent, and the easier one.

ML-KEM versus X25519
Keyshares size

(in bytes)
Ops/sec

(higher is better)

Algorithm PQ Client Server Client Server
ML-KEM-512 ✅ 800 768 45,000 70,000

ML-KEM-768 ✅ 1,184 1,088 29,000 45,000

ML-KEM-1024 ✅ 1,568 1,568 20,000 30,000

X25519 ❌ 32 32 19,000 19,000

ML-KEM is faster than X25519, but more bytes on the wire.

Feasibility study with Chrome
In 2019 we performed large-scale test of
PQ kex with Chrome. Takeaways:
● Performance of lattice-based KEMs

is acceptable.
● Significant amount of broken clients

because of protocol ossification (split
ClientHello.)

Google has been working with vendors to
fix issues.

X25519. CECPQ2 is X25519+NTRU-HRSS (lattice) and
CECPQ2b is X25519+SIKE (isogenies, broken)

https://blog.cloudflare.com/the-tls-post-quantum-experiment/

Adoption
2022 coordinating at IETF, we
enabled hybrid post-quantum
key agreement (~20% Internet.)
In 2023 Google enabled
server-side as well.
Browsers:
● Chrome & Edge: enabled by

default on Desktop since
April 2024.

● Firefox: small fraction;
opt-in possible.

Client PQE adoption on Cloudflare Radar

https://blog.cloudflare.com/post-quantum-for-all/
https://datatracker.ietf.org/doc/draft-tls-westerbaan-xyber768d00/
https://datatracker.ietf.org/doc/draft-tls-westerbaan-xyber768d00/
https://radar.cloudflare.com/adoption-and-usage?dateRange=12w#post-quantum-encryption-adoption

Client PQE adoption on Cloudflare Radar

https://radar.cloudflare.com/adoption-and-usage?dateRange=12w#post-quantum-encryption-adoption

Post-quantum to origins

We enabled support for PQ key agreement to origins (3).
0.5% of origins support PQ at time of writing.
0.34% incompatible when sending keyshare immediately.
We’ve reached out to customers to help remediate.

https://blog.cloudflare.com/post-quantum-to-origins/

Not just a technical challenge
In 2023 we’ve also commenced migrating our internal
connections to post-quantum key agreement.
Huge effort: every engineering team created inventory of
cryptography used, risks, and planned/executed migration.
Majority of our internal connections are secured (prioritizing
sensitive connections), but a long fat tail remains.
On the upside: we did not encounter any performance or
compatibility issues.

https://blog.cloudflare.com/post-quantum-cryptography-ga
https://blog.cloudflare.com/post-quantum-cryptography-ga

Key agreement 🤝
Urgent and the easier of the two to deploy; with ~20%
client adoption, the new modern baseline for the Internet .
That took 5 years.

Signatures 🖋
Less urgent, but much more challenging.

#1, many more parties involved:
Cryptography library developers, browsers, certificate
authorities, HSM manufacturers, CT logs, and every server
admin that cobbled together a PKI script.
Not just software update: also key rotation.

#2, there is no all-round great PQ signature

Sizes (bytes) CPU time (lower is better)

PQ Public key Signature Signing Verification

Standardized Ed25519 ❌ 32 64 1 (baseline) 1 (baseline)

RSA-2048 ❌ 256 256 70 0.3

NIST drafts ML-DSA-44 ✅ 1,312 2,420 4.8 0.5

FN-DSA-512 ✅ 897 666 8 ⚠ 0.5

SLH-DSA-128s ✅ 32 7,856 8,000 2.8

SLH-DSA-128f ✅ 32 17,088 550 7

blog.cloudflare.com/pq-2024

https://blog.cloudflare.com/pq-2024

Online signing — Falcon’s Achilles’ heel
● For fast signing, FN-DSA requires a floating-point unit (FPU).
● We do not have enough experience running cryptography

securely (constant-time) on the FPU.
● On commodity hardware, FN-DSA should not be used when

signature creation can be timed, eg.
TLS handshake.

● Not a problem for signature verification.

#3, there are many signatures on the Web
● Root on intermediate
● Intermediate on leaf
● Leaf on handshake
● Two SCTs for Certificate Transparency
● An OCSP staple

Typically 6 signatures
and 2 public keys
when visiting a website.
(And we’re not even counting DNSSEC.)

Using only ML-DSA-44

+17,144 bytes
Using ML-DSA for the TLS handshake and FN-DSA for the rest

+7,959 bytes
Is that too much? We had a look…

blog.cloudflare.com/sizing-up-post-quantum-signatures, 2021

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

And, of course…

Protocol ossification
Bump in missing requests
suggests some clients or
middleboxes do not like
certificate chains longer
than 10kB and 30kB.
This is problematic for
composite certificates.
Instead configure servers for
multiple separate
certificates and let TLS
negotiate the one to send.

Not great, not terrible
It probably won’t break the Web, but the performance
impact will delay adoption.

Chrome’s take on post-quantum certificates

Excerpt from Chrome’s May 2024 blog post.

https://blog.chromium.org/2024/05/advancing-our-amazing-bet-on-asymmetric.html

NIST signature on-ramp
NIST took notice and has called for new signature
schemes to be submitted.
I will cover these later on.
The short of it: there are some very promising submissions, but
their security is as of yet unclear.
Thus, we cannot assume that a new post-quantum signature
will solve our issues.

https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/pqc-dig-sig

In the meantime
There are small and larger changes
possible to the protocols to reduce the number of signatures.
● Leave out intermediate certificates.
● Use key agreement for authentication.
● Overhaul WebPKI, eg. Merkle Tree Certificates.
I will discuss these in more detail later on.

https://datatracker.ietf.org/doc/draft-jackson-tls-cert-abridge/
https://kemtls.org/
https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs/

Signatures 🖋
Less urgent, but path is unclear. Real risk we will start
migrating too late.

That’s not all: the Internet isn’t just TLS
There is much more cryptography out there with their own
unique challenges.
● DNSSEC with its harder size constraints
● Research into post-quantum fancy cryptography, eg. privacy

enhancing techniques such as anonymous credentials, is in
the early stages.

Inventory of large deployments of fancy cryptography.

https://github.com/fancy-cryptography/fancy-cryptography/

Questions so far?

III
Coping with post-quantum signatures

Recall: there are many signatures on the Web
● Root on intermediate
● Intermediate on leaf
● Leaf on handshake
● Two SCTs for Certificate Transparency
● An OCSP staple

Typically 6 signatures
and 2 public keys
when visiting a website.

Not all signatures are equal
The TLS handshake signature is created on-the-fly (online) and
is transmitted together with its public key.
The handshake signature benefits from balanced
signing/verification time, and balanced public key/signature size.
The other signatures are offline, and can trade signing time for
better verification time. The intermediate’s signatures are sent
with their corresponding public key, and the rest (SCT/OCSP
staple) without public key.
The former benefits from balanced signature/public key size. For
the latter it’s beneficial to trade public key and signature sizes.

Sizes (bytes) CPU time (lower is better)

PQ Public key Signature Signing Verification

Standardised Ed25519 ❌ 32 64 1 (baseline) 1 (baseline)

RSA-2048 ❌ 256 256 70 0.3

Hash-based XMSS* w=256 h=20 n=16 ✅ 32 608 6 ⚠ 2

NIST drafts ML-DSA-44 ✅ 1,312 2,420 4.8 0.5

FN-DSA-512 ✅ 897 666 8 ⚠ 0.5

SLH-DSA-128s ✅ 32 7,856 8,000 2.8

SLH-DSA-128f ✅ 32 17,088 550 7

Sample from
signatures
onramp

MAYOone ✅ 1,168 321 4.7 0.3

MAYOtwo ✅ 5,488 180 5 0.2

SQISign I ✅ 64 177 60,000 500

UOV Is-pkc ✅ 66,576 96 2.5 2

HAWK512 ✅ 1,024 555 2 1

Concrete instances with NIST drafts
Using ML-DSA-44 for everything adds 17kB.

Using ML-DSA-44 for handshake and FN-DSA-512 for the rest, adds
8kB. ⚠ Fast and secure FN-DSA-512 signing is hard to implement.

Using SLH-DSA-128s for everything adds 50kB. Order of magnitude
worse signing time than RSA. Most conservative choice.

Stateful hash-based signatures
Using XMSS(MT) with w=256, n=128, two subtrees for SCTs and
intermediates, and single tree for the rest, and ML-DSA-44 for
handshake signature, adds 8kB.

⚠ n=128 and w=256 instances are not standardised.

⚠ We loose non-repudiation.

⚠ Large precomputations/storage required for efficient signing.

⚠ Challenging to keep state.

Concrete instances with onramp candidates
Using MAYO one for leaf/intermediate, and two for the rest, adds
3.3kB. Signing time between ECC/RSA. ⚠ Needs more cryptanalysis.

Using UOV Is-pkc for root and SCTs, and HAWK512 for the rest, adds
3.2kB. 66kB for stored UOV public keys. HAWK relies on Falcon
assumptions and then some more.

Using UOV ls-pkc again, but combined with ML-DSA-44. Adds 7.4kB.
Relatively conservative choice.

SQIsign only. Adds 0.5kB. Signing time >1s (not constant-time), and
verification time >35ms. 🐢 There have been promising
developments.

https://eprint.iacr.org/2024/760

blog.cloudflare.com/sizing-up-post-quantum-signatures, 2021

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

Leaving out intermediates
Most browsers ship intermediate certificates, so why
bother sending them?

Leaving out intermediates

Three proposals:

● 2019, draft-kampanakis-tls-scas, send flag to indicate server
should only return leaf. Simple but error prone.

● 2022, draft-ietf-tls-cert-abridge, replaces intermediates with
identifiers from yearly updated central list from CCADB. Client
sends version of latest list. Also proposes tailored compression.

● 2023, draft-davidben-tls-trust-expr. Simplified: client sends which
trust store it uses, and the version it has. CA adds as metadata to
a certificate, in which trust store (version) it’s included. Trust
stores can then add intermediates as roots.

https://datatracker.ietf.org/doc/draft-kampanakis-tls-scas-latest/
https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/
https://datatracker.ietf.org/doc/draft-davidben-tls-trust-expr/

Gains leaving out intermediates: median 3kB

From Dennis Jackson’s draft-ietf-tls-cert-abridge-00

https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/00/

KEMTLS (aka. Authkem)
Use KEM instead of signature for handshake
authentication.

https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/

KEMTLS
Replacing ML-DSA-44 handshake signature with ML-KEM-512
saves 2.9kB server → client, but adds 768B in the second flight
client → server.
At the moment gains are modest. Interesting for embedded, to
reduce code size by eliminating primitive. Client authentication
with KEM requires extra roundtrip.
Large change to TLS. Subtle changes in security guarantees. We
have a formal analysis.
Proof-of-possession unclear. Could be done with lattice-based
zero-knowledge proofs or challenge-response.

https://eprint.iacr.org/2022/1111

Merkle Tree Certificates

Pain-points of current WebPKI

OCSP is expensive to run, whereas majority of users don’t use
it, but rely on CRL instead (via eg. CRLite).
Too many signatures.
Certificate Transparency is difficult to run.
Many sharp edges: path building, punycode, constraint
validation, etc.
(Domain control validation is imperfect — not addressed.)

Changing the WebPKI

With the post-quantum migration, the marginal cost of
changing the WebPKI is lower than ever.
There is a huge design space, with many trade offs.
Merkle Tree Certificates (MTC) is a concrete, ambitious, but
early draft. We’re looking for feedback on the design and
general direction.
Not a complete replacement for current WebPKI: it’s an
optimisation of the common case and falls back to X.509+CT.

https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs/

Merkle Tree Certificates in short (1)

On a set time, eg. every hour, the CA publishes:
● The batch of assertions they certify. All assertions in a batch

are implicitly valid for the same window, eg. 14 days. For
each batch, the CA builds a Merkle tree on top.

● A signature on the roots of all currently valid batches.
Transparency services (eg. browser vendors) regularly pull the
latest batches and window signatures from CAs, verify them for
consistently, and only send the Merkle tree roots to the
browsers.

Merkle Tree Certificates in short (2)

A Merke tree certificate is an assertion together with a Merkle
authentication path to the root of the batch.
A server would install three certificates: two Merkle tree
certificates 7 days apart, and a fallback X.509 certificate.
When connecting to a server, the client sends the sequence
number of the latest batches it knows of each MTC CA.
If the client is sufficiently up-to-date, the server can return one
of the Merkle tree certs, and otherwise will fall back to X.509.

Merkle Tree Certificates sizes

There are currently 1 billion unexpired certificates in CT.
If reissued every 7 days by one MTC CA, we’d have batches of 6
million assertions.
That amounts to authentication paths of 736 bytes, and with a
ML-DSA-44 public key a typical Merkle tree certificate will be
well below 2.5kB, smaller than only the median compressed
classical intermediate certificate of 3.2kB.
Try MTC for yourself: PoC MTC CA.

https://github.com/bwesterb/mtc

Wrapping up

We saw several different approaches to cope with large
post-quantum signatures, from simple to ambitious.
There are still many unknowns: among others, compliance
requirements; cryptanalytic breakthroughs; ecosystem
ossification; stakeholder constraints; etc.
Which approach to take? I’d say it’s good to have multiple pots
on the stove.

Thank you, questions?

References
● Further reading: state of the post-quantum Internet (2024).
● Follow adoption on Cloudflare Radar.
● Check out out pq.cloudflareresearch.com for

● technical details on our deployment;
● pointers to software support for PQ to experiment; and
● more references.

● Reach out: ask-research@cloudflare.com

https://blog.cloudflare.com/pq-2024
https://radar.cloudflare.com/adoption-and-usage?dateRange=12w#post-quantum-encryption-adoption
https://pq.cloudflareresearch.com
mailto:ask-research@cloudflare.com

Backup slides

blog.cloudflare.com/post-quantum-crypto-should-be-free

http://blog.cloudflare.com/post-quantum-crypto-should-be-free

This function from FN-DSA
as submitted to round 3 is
not constant-time on
ARMv7 as claimed.
Can you spot the error?

TLS 1.3 handshake

KEM versus Diffie–Hellman

